K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(a\ge0\)

b, a \(\le0\)

c, \(a\le4\)

d, \(a\ge-\dfrac{7}{3}\)

25 tháng 5 2019

a)a≥0

b)a≤0

C)a≤4

d)a≥\(\frac{-7}{3}\)

22 tháng 8 2021

Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa

Khi\(\dfrac{1}{3-2x}\ge0\)

\(\Leftrightarrow3-2x>0\)

\(\Leftrightarrow-2x< -3\)

\(\Leftrightarrow x>\dfrac{3}{2}\)

22 tháng 8 2021

undefined

13 tháng 4 2021

a

căn có nghĩa 

\(\Leftrightarrow\frac{a}{3}\ge0\)   

\(\Leftrightarrow a\ge0\)   

b

căn có nghĩa 

\(\Leftrightarrow-5a\ge0\)   

\(\Leftrightarrow b\le0\left(-5\le0\right)\)   

c

căn có nghĩa 

\(\Leftrightarrow4-a\ge0\)   

\(\Leftrightarrow-a\ge0-4\)   

\(\Leftrightarrow-a\ge-4\)   

\(\Leftrightarrow a\le4\)   

d

căn có nghĩa

\(\Leftrightarrow3a+7\ge0\)   

\(\Leftrightarrow a\ge-\frac{7}{3}\)

20 tháng 5 2021

a>0

7 tháng 8 2023

\(\sqrt{\dfrac{1}{-1+x}}=\sqrt{\dfrac{1}{x-1}}\) có nghĩa khi:

\(\left\{{}\begin{matrix}\dfrac{1}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

7 tháng 8 2023

\(ĐKXĐ:\dfrac{1}{-1+1x}>0\Leftrightarrow-1+1x< 0\\ \Leftrightarrow x< -1\)

8 tháng 9 2021

a) ĐKXĐ: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)

b) ĐKXĐ: \(-5a\ge0\Leftrightarrow a\le0\)

c) ĐKXĐ: \(4-a\ge0\Leftrightarrow a\le4\)

d) ĐKXĐ: \(3a+7\ge0\Leftrightarrow a\ge-\dfrac{7}{3}\)

 

a: ĐKXĐ: \(a\ge0\)

b: ĐKXĐ: \(a\le0\)

c: ĐKXĐ: \(a\le4\)

d: ĐKXĐ: \(a\ge-\dfrac{7}{3}\)

9 tháng 9 2023

Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)

      \(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)

       `<=>x > 2`

9 tháng 9 2023

hmmm....đợi cô nghĩ chút<)

 

27 tháng 11 2021

\(x>\dfrac{3}{2}\)

18 tháng 9 2021

1)\(\sqrt{3-2\sqrt{2}}-\sqrt{2}=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{2}=\sqrt{2}-1-\sqrt{2}=-1\left(đpcm\right)\)

2) \(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)

3) \(ĐK:\)\(\left\{{}\begin{matrix}\dfrac{x-1}{x+3}\ge0\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\\x\ne-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x< -3\end{matrix}\right.\)

4) \(ĐK:\left\{{}\begin{matrix}7-x\ge0\\a\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le7\\a\ge0\end{matrix}\right.\)

8 tháng 1 2019

Điều kiện 4 – a ≥ 0 => -a ≥ -4 = > a ≤ 4

8 tháng 9 2021

a) \(\sqrt{\dfrac{a}{3}}\) có nghĩa khi: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)

Vậy \(a\ge0\) thì \(\sqrt{\dfrac{a}{3}}\) xác định

b) \(\sqrt{-5a}\) có nghĩa khi \(-5a\ge0\Leftrightarrow a\le0\)

Vậy \(a\le0\) thì \(\sqrt{-5a}\) xác định

c) \(\sqrt{4-a}\) có nghĩa khi \(4-a\ge0\Leftrightarrow-a\ge-4\Leftrightarrow a\le4\)

Vậy \(a\le4\) thì \(\sqrt{4-a}\) xác định

 

a: ĐKXĐ: \(a\ge0\)

b: ĐKXĐ: \(a\le0\)

c: ĐKXĐ: \(a\le4\)