K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Kẻ \(\text{Cy}//\text{AB}\) cắt tia \(\text{Ax}\) tại \(\text{H}\)

\(\widehat{BAH}=\widehat{CHA}\) (so le trong, \(\text{AB//CH}\))

\(\widehat{CAH}=\widehat{BAH}\) (Ax tia là phân giác)

\(\Rightarrow\widehat{CHA}=\widehat{CAH}\) suy ra \(\Delta CAH\) cân tại C

Do đó: \(\left\{{}\begin{matrix}CH=CA\\BK=CA\end{matrix}\right.\)\(\Rightarrow CH=BK; \text{CH//BK}\)

Suy ra tứ giác \(\text{KCHB}\) là hình bình hành suy ra \(E\) là trung điểm \(KH\)

Do \(F\) là trung điểm của \(AK\) nên \(EF\) là đường trung bình của \(\Delta KHA\)

Do đó \(\text{EF//AH}\) hay \(\text{EF//Ax}\) (ĐPCM)

1 tháng 4 2017

tham khảo thôi nhé, bn cố vẽ hình mk vẽ hình tệ lắm

8 tháng 5 2021

giải giúp con mình nhé. Xin cám ơn

 

Đề sai rồi bạn

a: Xét ΔABM và ΔADM có

AB=AD

BM=DM

AM chung

Do đó: ΔABM=ΔADM

b: ta có: ΔABM=ΔADM

=>\(\widehat{BAM}=\widehat{DAM}\)

=>\(\widehat{BAK}=\widehat{DAK}\)

Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

=>BK=DK

c: Ta có: ΔABK=ΔADK

=>\(\widehat{ABK}=\widehat{ADK}\)

Ta có: \(\widehat{ABK}+\widehat{EBK}=180^0\)(hai góc kề bù)

\(\widehat{ADK}+\widehat{CDK}=180^0\)(hai góc kề bù)

mà \(\widehat{ABK}=\widehat{ADK}\)

nên \(\widehat{EBK}=\widehat{CDK}\)

Xét ΔKEB và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKEB=ΔKDC

=>\(\widehat{BEK}=\widehat{CDK}\)

ΔKEB=ΔKDC

=>\(\widehat{BKE}=\widehat{DKC}\)

mà \(\widehat{DKC}+\widehat{BKD}=180^0\)(hai góc kề bù)

nên \(\widehat{BKE}+\widehat{BKD}=180^0\)

=>E,K,D thẳng hàng

Bài 11: 

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

21 tháng 10 2023

a: Xét ΔABK và ΔCDK có

KA=KC

\(\widehat{AKB}=\widehat{CKD}\)

KB=KD

Do đó: ΔABK=ΔCDK

b: ΔABK=ΔCDK

=>\(\widehat{KAB}=\widehat{KCD}\)

mà hai góc này ở vị trí so le trong

nên AB//CD
c: ΔABK=ΔCDK

=>AB=CD

mà CD=CE
nên AB=CE

AB//CD

=>AB//CE

Xét tứ giác ABEC có

AB//CE

AB=CE

Do đó: ABEC là hình bình hành

=>AC=BE

d: Xét ΔABC có

I,K lần lượt là trung điểm của CB,CA

=>IK là đường trung bình của ΔABC

=>IK//AB

mà AB//DE

nên IK//DE

Xét ΔBCE có

M,I lần lượt là trung điểm của BE,BC

=>MI là đường trung bình của ΔBCE
=>MI//CE

=>MI//DE
MI//DE

KI//DE

mà MI,KI có điểm chung là I

nên M,I,K thẳng hàng

1 tháng 4 2021

tự vẽ hình 

a, có AM/AB=1/3

mà AN/AC=1,5/4,5=1/3

=> AM/AB=AN/AC

=> MN//BC

b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC

=> <AMN= <ABC

Xét tam giác AMI và tam giác ABK

<AMI= <ABC (cmt)

<MAK chung

=> tam giác AMI đồng dạng tam giác ABK

MI/BK= AI/AK