Tính A = (-7) + (-7)2 + ... + (-7)2006 + (-7)2007. CM: A \(⋮\)43
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (-7) + (-7)2 + ...+ (-7)2006 + (-7)2007
A = [ (-7) + (-7)2 + (-7)3 ] + [ (-7)4 + (-7)5 + (-7)6 ] + ... + [ (-7)2005 + (-7)2006 + (-7)2007 ]
A = (-7) . [ 1 + (-7) + (-7)2 ] + (-7)4 . [ 1+ (-7) + (-7)2 ] + ... + (-7)2005 . [ 1 + (-7) + (-7)2 ]
A = (-7) . 43 + (-7)4 . 43 + ... + (-7)2005 . 43
A = 43 . [ (-7) + (-7)4 + ... + (-7)2005 ]
=>A chia hết cho 43
Vậy A chia hết cho 43
ta có
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+..\left(-7\right)^{2007}\)
\(\Rightarrow-7A=\left(-7\right)^2+\left(-7\right)^3+..+\left(-7\right)^{2008}\)
Lấy hiệu hai đẳng thức ta có
\(8A=\left(-7\right)-\left(-7\right)^{2008}\Rightarrow A=-\frac{7+7^{2008}}{8}\)
còn A không chia hết cho 43 nhé
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(\left(-7\right).A=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}+\left(-7\right)^{2008}\)
=> \(A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)
=> \(8A=-7-7^{2008}\) => \(A=-\frac{7+7^{2008}}{8}\)
b) \(A=\left(\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right)+...+\left(\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right)\) ( Chia thành 2007 : 3 = 669 nhóm 3 số)
\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)
\(A=\left(-7\right).43+...+\left(-7\right)^{2005}.43=43.\left(\left(-7\right)+...+\left(-7\right)^{2005}\right)\)chia hết cho 43
Vậy A chia hết cho 43
A= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007
<=> -7A = (-7)^2+ … + (- 7)^2006 + (- 7)^2008
A-(- 7A )= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007-{(-7)^2+ … + (- 7)^2006 + (- 7)^2008}
<=> 8A = -7 - (- 7)^2008 = -7 + 7^2008 = 7^2008 - 7
<=> A = (7^2008 - 7)/8 .
\(A=\left(-7\right)+\left(-7\right)^3+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(A=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(A=\left(-7\right).42+...+\left(-7\right)^{2005}.43\)
\(A=42.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]\)
\(=>A⋮43\)
\(A=\left(-7\right)+\left(-7\right)^2+....+\left(-7\right)^{2007}\)
\(A=-\left(7+7^2+...+7^{2007}\right)\)
\(7A=-\left(7^2+7^3+....+7^{2008}\right)\)
7A-A=6A= 72008- 7
=> A= \(\frac{7^{2008}-7}{6}\)
Mình làm vậy ko biết có đúng ko nữa
Ta có A.(-7)-A=(-8)A=[(-7).[(-7)+(-7)2 +...+(-7)2007 ]-[(-7)+(-7)2 +...+(-7)2007 =(-7)2 +(-7)3 +...+(-7)2008 -[(-7)+(-7)2 +...+(-7)2007 = (-7)2008 +7=>A=[(-7)2008 +7]/(-8)
Ta có: A = (-7) + (-7)2 + ... + (-7)2006 + (-7)2007.
\(\Rightarrow\)A = [ (-7) + (-7)2 + (-7)3 ] + ... + [ (-7)2005 + (-7)2006 + (-7)2007 ]
\(\Rightarrow\)A = (-7). [ 1 + (-7) + (-7)2 ] + ... + (-7)2005 . [ 1 + (-7) + (-7)2 ]
\(\Rightarrow\)A = (-7). 43 + ... + (-7)2005 . 43
\(\Rightarrow\)A = 43. [ (-7) + ... + (-7)2005 ] \(⋮\) 43
\(\Rightarrow\)A \(⋮\) 43
Vậy A \(⋮\) 43.
Chúc pạn hok tốt!!!