phân tích đa thức thành nhân tử
a, \(x^2-y^2\)
b,\(x^2-6xy+9y^2-36\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2y^2-x^2+6xy-9y^2\)
\(=x^2y^2-\left(x^2-6xy+y^2\right)\)
\(=\left(xy\right)^2-\left(x-3y\right)^2\)
\(=\left(xy-x+3y\right)\left(xy+x-3y\right)\)
b) Ta có: \(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=9-\left(x-y\right)^2\)
\(=\left(9-x+y\right)\left(9+x-y\right)\)
a) \(2x^3+6xy-x^2z-3yz\)
= \(\left(2x^3+6xy\right)-\left(x^2z+3yz\right)\)
=\(2x\left(x^2+3y\right)-z\left(x^2+3y\right)\)
=\(\left(x^2+2y\right)\left(2x-z\right)\)
b)\(x^2-6xy+9y^2-49\)
=\(x^2-2.x.3y+\left(3y\right)^2-7^2\)
=\(\left(x-3y\right)^2-7^2\)
=\(\left(x-3y+7\right)\left(x-3y-7\right)\)
x²-6xy+9y²-36 =(x²-6xy+9y²)-36 =(x-3y)²-6² =(x-3y+6)(x-3y-6)
\(x^4+6x^3+13x^2+12x+4\)
\(=x^4+x^3+5x^3+5x^2+8x^2+8x+4x+4\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+8x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+8x+4\right)\)
\(=\left(x+1\right)\left(x^3+x^2+4x^2+4x+4x+4\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left(x+2\right)^2\)
x^2+6xy+9y^2-3x-9y+2
=( x^2+6xy+9y^2)-3(x+3y)+9/4 -1/4
=(x+3y)^2-3(x+3y)+(3/2)^2- 1/4
=(x+3y+3/2)^2-(1/2)^2
=(x+3y+3/2+1/2)(x+3y+3/2-1/2)=(x+3y+2)(x+3y+1)
= x^2 - 6xy + 9y^2 - 49
= x^2 - 6xy + ( 3y )^2 - 49
= (x - 3y)^2 - 7^2
= (x - 3y -7)( x-3y +7) tk cho mk nha
Dùng hằng đẳng thức là xong
a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
b, \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
a) 3x2 - 7x + 4
= 3x2 - 3x - 4x + 4
= 3x( x - 1 ) - 4( x - 1 )
= ( x - 1 )( 3x - 4 )
b) x2 - 6xy + 9y2 = ( x - 3y )2
c) x2 - 8x - 9
= x2 - 9x + x - 9
= x( x - 9 ) + ( x - 9 )
= ( x - 9 )( x + 1 )
a) 3x2 - 7x + 4
= 3x2 - 4x - 3x + 4
= (3x2 - 4x) - (3x - 4)
= x.(3x - 4) - (3x - 4)
= (3x - 4).(x - 1)
b) x2 - 6xy + 9y2
= x2 - 2.x.3y + (3y)2
= (x - 3y)2
c) x2 - 8x - 9
= x2 - 9x + x - 9
= (x2 - 9x) + (x - 9)
= x.(x - 9) + (x - 9)
= (x - 9).(x + 1)
a. \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b. \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)
a: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
b: \(x^2-6xy+9y^2-36=\left(x-3y\right)^2-6^2=\left(x-3y-6\right)\left(x-3y+6\right)\)