Tính các tổng sau bằng cách hợp lý nhất
\(A=\dfrac{ }{\dfrac{-1}{2}+\dfrac{3}{5}+\dfrac{-1}{9}+\dfrac{1}{127}+\dfrac{-7}{18}+\dfrac{4}{35}+\dfrac{2}{7}}\)
\(B=\dfrac{ }{\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}}\)
m.n gp mk nha cái gạch trên mỗi câu ko có ý nghĩa gì đâu
\(A=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}\)
\(A=\left(\dfrac{-9-2-7}{18}\right)+\left(\dfrac{21+4+10}{35}\right)+\dfrac{1}{127}\)
\(A=-1+1+\dfrac{1}{127}\)
\(A=\dfrac{1}{127}\)
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.4}+\dfrac{1}{3.4.5.4}+...+\dfrac{1}{98.99.100.4}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.\left(5-1\right)}+\dfrac{1}{3.4.5.\left(6-2\right)}+...+\dfrac{1}{98.99.100.\left(101-97\right)}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5-1.2.3.4}+\dfrac{1}{3.4.5.6-2.3.4.5}+...+\dfrac{1}{98.99.100.101-97.98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}-\dfrac{1}{1.2.3.4}+\dfrac{1}{3.4.5.6}-\dfrac{1}{2.3.4.5}+...+\dfrac{1}{98.99.100.101}-\dfrac{1}{97.98.99.100}\)
\(\dfrac{1}{4}B=\dfrac{1}{98.99.100.101}\)
\(B=\dfrac{1}{98.99.100.101}.4=\dfrac{1}{98.99.25.101}\)
tick cho mk nha
bài tự làm 100%
co gì chưa đc thì coi lại nha