Cho \(S=\dfrac{2}{2005+1}+\dfrac{2^2}{2005^2+1}+\dfrac{2}{2005^{2^2}+1}+................+\dfrac{2^{n+1}}{2005^{2^n}+1}+..........+\dfrac{ }{2005^{2^{2005}}+1}\)
So sánh \(S\) với \(\dfrac{1}{1002}\)
Help me!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2005A=\dfrac{2005^{2006}+2005}{2005^{2006}+1}=1+\dfrac{2004}{2005^{2006}+1}\)
\(2005B=\dfrac{2005^{2005}+2005}{2005^{2005}+1}=1+\dfrac{2004}{2005^{2005}+1}\)
Vì \(\dfrac{2004}{2005^{2006}+1}< \dfrac{2004}{2005^{2005}+1}\Rightarrow1+\dfrac{2004}{2005^{2006}+1}< 1+\dfrac{2004}{2005^{2005}+1}\)
\(\Rightarrow2005A< 2005B\Rightarrow A< B\)
Vậy A < B
ta thấy : \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}=1-\dfrac{1}{2}\)
tương tự: \(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
....
\(\dfrac{1}{2005^2}=\dfrac{1}{2005.2005}< \dfrac{1}{2004.2005}=\dfrac{1}{2004}-\dfrac{1}{2005}\)
cộng vế theo vé các BĐT trên, ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2005^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2004}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)=> đpcm
\(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2005^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{20055}\)
\(A< 1-\frac{1}{2005}=\frac{2004}{2005}\)
\(\Rightarrow A< \frac{2004}{2005}\left(đpcm\right)\)
Đặt M=1/2^2+1/3^2+1/4^2+...+1/2005^2
M<1/1.2+1/2.3+1/3.4+...+1/2004.2005
M<1-1/2+1/2-1/3+1/3-1/4+...+1/2004-1/2005
M<1-1/2005=2004/2005(đpcm)
Sửa đề:
\(VP=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)
Ta có: \(2005^2+1=\left(2005+1\right)^2-2.2005.1=2006^2-2.2005\)
\(\Rightarrow VP=\sqrt{2006^2-2.2005+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)
\(=\sqrt{\left(2006-\dfrac{2005}{2006}\right)^2}+\dfrac{2005}{2006}\)
\(=2006-\dfrac{2005}{2006}+\dfrac{2005}{2006}=2006\)
Phương trình đã cho tương đương
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2006\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2006\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)
Đến đây thì tự xét trường hợp và giải tìm nghiệm, bài này không cần điều kiện nhé