Cho a,b là các stn lẻ. CMR : a mũ 2 + b mũ 2 không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiến thức: một số chính phương là một số chia hết cho 4 hoặc chia 4 dư 1
Bài giải
a) A = 3 + 32 + 33 + 34 +...+ 319 + 320
A = (3 + 32) + (33 + 34) +...+ (319 + 320)
A = (3.1 + 3.3) + (33.1 + 33.3) +...+ (319.1 + 319.3)
A = [3.(1 + 3)] + [33.(1 + 3)] +...+ [319.(1 + 3)]
A = 3.4 + 33.4 +...+ 319.4
A = (3 + 33 +...+ 319).4 chia hết cho 4
Vì A chia hết cho 4
Suy ra A là một số chính phương
b) B = 11 + 112 + 113
B = 11 + (112 + 113)
B = 11 + (112.1 + 112.11)
B = 11 + [112.(1 + 11)]
B = 11 + 112.12
Vì 112.12 chia hết cho 4
và 11 chia 4 dư 3
Nên B không phải là một số chính phương
Vậy B không phải là một số chính phương
a) A = 3 + 32 + 33 + ... + 320
Các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9
=> 32; 33; ...; 320 chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
1)
a) A=3+32+33+34+35+36+....+328+329+330�=3+32+33+34+35+36+....+328+329+330
⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)
⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)
⇔A=3.13+34.13+....+328.13⇔�=3.13+34.13+....+328.13
⇔A=13(3+34+....+328)⋮13(dpcm)⇔�=13(3+34+....+328)⋮13(����)
b) A=3+32+33+34+35+36+....+325+326+327+328+329+330�=3+32+33+34+35+36+....+325+326+327+328+329+330
⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)
⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)
⇔A=3.364+....+325.364⇔�=3.364+....+325.364
⇔A=364(3+35+310+....+325)⇔�=364(3+35+310+....+325)
⇔A=52.7(3+35+310+....+325)⋮52(dpcm)
2) A=3+32+33+....+330�=3+32+33+....+330
⇔3A=3(3+32+33+....+330)⇔3�=3(3+32+33+....+330)
⇔3A=32+33+34+....+330+331⇔3�=32+33+34+....+330+331
⇔3A−A=(32+33+34+....+330+331)−(3+32+33+....+330)⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)
⇔2A=331−3⇔2�=331−3
⇔A=331−32⇔�=331−32
Vậy A không phải là số chính phương
Học tốt nha