Chứng minh các đẳng thức sau:
( a + b+ c)^3 - a^3 + b^3 + c^3 = 3(a + b) (b + c) (c + a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3+b^3+c^3-3abc=(a+b)^3-3a^2.b-3a.b^2-3abc=[(a+b)^3+c^3]-3ab(a+b+c)=(a+b+c).[(a+b)^2-c.(a+b)+c^2]-3ab(a+b+c)=(a+b+c).(a^2+2ab+b^2-ac-bc+c^2-3ab)=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Ta có \(VT=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right)c^2+c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2+ab\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)\right]+c\left(b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
Vậy \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(b+c\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2+bc+c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
mình trả lời nè
(a+b+c)3−a3−b3−c3(a+b+c)3-a3-b3-c3
=[(a+b)+c)3−a3−b3−c3=[(a+b)+c)3-a3-b3-c3
=(a+b)3+3(a+b)2.c+3(a+b).c2+c3−a3−b3−c3=(a+b)3+3(a+b)2.c+3(a+b).c2+c3-a3-b3-c3
=a3+3a2b+3ab2+b3+3c(a+b)(a+b+c)+c3−a3+b3+c3=a3+3a2b+3ab2+b3+3c(a+b)(a+b+c)+c3-a3+b3+c3
=3ab(a+b)+3c(a+b)(a+b+c)=3ab(a+b)+3c(a+b)(a+b+c)
=3(a+b)(ab+ac+bc+c2)=3(a+b)(ab+ac+bc+c2)
=3(a+b)[a(b+c)+c(b+c)]=3(a+b)[a(b+c)+c(b+c)]
=3(a+b)(b+c)(a+c)