cho tam giac ABC can tai A.ke AH vuong goc voi BC
CMR
1,HB=HC
2,AH la tia phan giac cua goc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
+)t/có:△ABC cân A
=>AB=AC
và góc B=góc C
+)xét △ABH và △ACH
có:góc AHB= gócAHB(=900)
AB=AC(cmt)
góc B = góc C(cmt)
=>△ABH=△ACH
b,
+)ta lại có△ABH=△ACH
=>góc BAH=góc CAH
=>AH là tia pg góc A
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
a)
ta có: tam giác ABC cân tại A suy ra AB=AC; B=C
xét tam giác ABH và tam giác ACH có:
AB=AC(gt)
AH(chung)
BAH=CAH(gt)
suy ra tam giác ABH= tam giac ACH(c.g.c)
suy ra BH=CH(đfcm)
b)
xét 2 tam giác vuông ADH và AEH có
AH(chung)
DAH=EAH(gt)
suy ra tam giác DAH=EAH(CH-GN)
suy ra HD=HE suy ra tam giác HDE cân tại H(đfcm)
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
A B C D E K H I
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
A B C H
1. Xét 2 \(\Delta vuông:\) \(\Delta AHB\) và \(\Delta AHC\) có:
AB = AC (gt)
AH: chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
\(\Rightarrow HB=HC\) (2 cạnh t/ứng)(đpcm)
2. Vì \(\Delta AHB=\Delta AHC\left(ý1\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc t/ứng)
\(\Rightarrow AH\) là tia p/g của \(\widehat{BAC}\left(đpcm\right)\)