cho a,b,c > 0 chứng minh a^2/c + b^2/a + c^2/b lớn hơn hoặc bằng a + b + c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Cho a, b, c > 0; a+b+c=3. Chứng minh
[(a+1):(b2+1)]+[(b+1):(c2+1)]+[(c+1):(a2+1)] lớn hơn hoặc bằng 3
\(VT=\Sigma_{cyc}\frac{a+1}{b^2+1}=\Sigma_{cyc}\left(\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\right)\)
\(=\left(a+b+c+3\right)-\Sigma_{cyc}\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge6-\Sigma_{cyc}\frac{b\left(a+1\right)}{2}=6-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b =c = 1
Is that true?
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\ge a.2bc+b.2ca+c.2ab=2abc+2abc+2abc=6abc\)
Ta có:\(a\ge b\ge c\ge0\)
\(\Rightarrow a^2\ge b^2\ge c^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2\ge0\\b^2-c^2\ge0\\c^2-a^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}c^3\left(a^2-b^2\right)\ge0\\a^3\left(b^2-c^2\right)\ge0\\b^3\left(c^2-a^2\right)\ge0\end{cases}}}\)
\(\Rightarrow c^3\left(a^2-b^2\right)+a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)\ge0\)
\(\Rightarrow a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)\ge0\)
Do a, b, c >0
=> a+b+c>0 và \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) >0
Áp dụng bất đẳng thức Cô si ta có:
\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) 3 \(\sqrt[3]{\dfrac{a^2b^2c^2}{abc}}\) = 3\(\sqrt[3]{abc}\)
a+b+c \(\ge\) 3 \(\sqrt[3]{abc}\)
=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) - (a+b+c) \(\ge\) 3\(\sqrt[3]{abc}\) - 3\(\sqrt[3]{abc}\)
=>\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\)- (a+b+c) \(\ge\) 0
=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) a+b+c (dpcm)
thế nếu lấy cái (a+b+c)-(...) =0 thì s