Cho 3 số x, y, z khác 0 thỏa mãn 1/x+1/y+1/z=1. chứng minh rằng 1/x^4+1/y^4+1/z^4>=1/xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2 <=> \(\frac{1}{x^2+1}\ge\frac{1}{2}\)
\(\frac{1}{y^2+1}\ge\frac{1}{2}\)
\(\frac{1}{z^2+1}\ge\frac{1}{2}\)
Mà \(\frac{1}{x^2+1}\ge\frac{1}{2}\Leftrightarrow1.2\ge x^2+1\Leftrightarrow x^2\le1\)
Mà x,y,z > 0 và xyz=1 => 0 < x,y,z < 1 => x2 < 1
tương tự vs y và z nhé
Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)
Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:
\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)
Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)
Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)
khi đó từ gt, ta có:
\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)
\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)
\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(=1-2xyz\ge\frac{3}{4}\)
từ các đánh giá trên => \(A\ge\frac{1}{4}\)
=> đpcm
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
Đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)thì giả thiết trở thành ab=1.
tìm Min \(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\)
ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{a^2+b^2-2}+a^2+b^2=\frac{1}{a^2+b^2-2}+a^2+b^2-2+2\)
Áp dụng bất đẳng thức AM-GM:\(\frac{1}{a^2+b^2-2}+a^2+b^2-2\ge2\)
do đó \(VT\ge4\)
(x+y+z)^2=x^2+y^2+z^2
=>2(xy+yz+xz)=0
=>xy+xz+yz=0
=>xy/xyz+xz/xyz+yz/xyz=0
=>1/x+1/y+1/z=0
Let \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\) we need prove:
\(\left\{{}\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\\a,b,c\ne0\end{matrix}\right.\)
By AM-GM we have: \(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2\sqrt{b^4c^4}=2b^2c^2\\c^4+a^4\ge2\sqrt{c^4a^4}=2c^2a^2\end{matrix}\right.\)
\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)
By AM-GM we have:
\(\left\{{}\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge b^2\cdot2\sqrt{a^2c^2}=2b^2ac\\b^2c^2+c^2a^2=c^2\left(b^2+a^2\right)\ge c^2\cdot2\sqrt{b^2a^2}=2c^2ab\\c^2a^2+a^2b^2=a^2\left(b^2+c^2\right)\ge a^2\cdot2\sqrt{b^2c^2}=2a^2bc\end{matrix}\right.\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge b^2ac+c^2ab+a^2bc\)
\(=abc\left(a+b+c\right)=abc\left(a+b+c=1\right)\left(2\right)\)
From \((1);(2)\) we are done !!
where are you from?