Cho tam giác ABC có AB = AC (tam giác cân tại A ) . Tìm điểm M bất kì nằm trên BC hạ các đường thẳng MH vuống góc với AB tại H và MK vuông góc với AC tại K . Chứng minh rằng M di chuyển trên BC thì tổng độ dài MH +MK là không đổi .
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
14 tháng 8 2021
Ta có:
K trọng tâm của tam giác đều ABC
=>MH=1/3AG
MK=1/3AG
MI=1/3AG
=>MI+MK+MH=AG
nha bạn chúc bạn học tốt
14 tháng 4 2021
a, tứ giác AKHM có
∠AHM= ∠AKM =∠HAK ( =90 )
⇒ tứ giác AKHM là hình chữ nhật
b)Ta có tam giác ABC có M trug điểm BC
NH vuông góc vs AB=> MH// AC và MH =1/2 AC
Cmtt K là trung điểm AC
=> HK là đg tb của tam giác ABC=> HK//B M Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành
c)Ta có EF là đường tb tam giác MHK
=> EF//HK
EF// HK và EF=1/2 HK
GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM
EF= HO= KO
Mà HO= HI+IO
=> KO=JO+KJ
Mà IO= JO=> HI= KJ
d) Dễ thấy EF =1/3 AB= 4 căn 3 /3