A = x17- 2004.x16 + 2004.x15 - 2004.x14 +...+2004.(x - 1)
Tính A tại x = 2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm cau thứ hai còn câu trước giống như vậy
2004 x 2005 - 2004 x 2002
=2004 x (2005 -2002)
=2004 x 3
=6012tick nha
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81).
Vậy tận cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
Có 4 x 4 = 16
6 x 4 = 24
4 x 4 = 16.
Như vậy 2004 x 2004 x… X 2004 có tận cùng lặp đi lặp lại băng 6 ( nếu số số hạng là chẵn ), bằng 4 ( nếu số số hạng là lẻ ).
Vậy A có tận cùng là 4 vì có 2003 thừa số.
3 x 3 = 9
9 x 3 = 27
7 x 3 = 21
1 x 3 = 3
3 x 3 = 9.
Quy luật cũng lặp đi lặp lại. Với số số hạng là
2 – 3 – 4 – 5
6 – 7 – 8 – 9
( khoảng cách là 4)
2004 chia hết 4 nên trong 4 hiệu 2004 – 2, 2004 – 3, 2004 – 4, 2004 – 5 chỉ có 2004 – 4 chia hết cho 4.
Vậy B có tận cùng là 1.
(3x3x3x3 có tận cùng là 1).
A + B có tận cùng là 4 + 1 = 5.
Vậy A + B chia hết cho 5.
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003).
Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003.
Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81).
Vậy tận cùng của A + B là 4 + 1 = 5.
Do đó A + B chia hết cho 5.
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24). B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận cùng của A+B là 4+1=5 . do đó A+B chia hết cho 5
Thay \(x=2003\) vào A ta có:\(A=2003^{17}-2004.2003^{16}+2004.2003^{15}-2004.2003^{14}+...+2004.\left(2003-1\right)\)
\(=2003^{17}-\left(2003+1\right).2003^{16}+\left(2003+1\right).2003^{15}-\left(2003+1\right).2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2003^{17}-2003^{17}+2003^{16}-2003^{16}+2003^{15}-2003^{15}+2003^{14}-2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2004.2002=4012008\)