Bài 1: Tìm tất cả các số nguyên thỏa:
(n^2-3).(n^2-36)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(n+5) / (n+1)
= (n+1+4) / (n+1)
= 1 + 4/(n+1)
Để 4 chia hết cho n+1 thì n+1 là ước dương của 4 vì số nguyên tố ko bao giờ âm
Suy ra n+1 =(1;2;4)
Thử từng trường hợp với n+1 =1 ; n+1 =2; n+1=4 (bạn tự làm)
Suy ra n=3
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
*Bạn ơi, bài 3 mình ko hiểu đề cho lắm ấy?? Bạn xem lại đề thử nhé!! Nhớ tk giúp mình nha 😊*
Bài 1:
Tổng các số nguyên x thỏa mãn bài toán là:
-99+(-98)+(-97)+(-96)+...+95+96
= -99+(-98)+(-97)+(-96+96)+(-95+95)+...+(-1+1)+0
= -99+(-98)+(-97)+0+0+...+0
= -294
Bài 4:
n-1 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
=> n thuộc {2;0;4;-2;6;-4;16;-14}
Mà n thuộc N
Do đó: n thuộc {2;0;4;6;16}
Vậy...
Bài 5:
5+n chia hết cho n+1
=> (n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Hay n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {0;-2;1;-3;3;-5}
Vậy...
Bài 1: Các số nguyên x thỏa mãn là: -99; -98 ; -97;....; 96
Tổng các số nguyên x là: (-99)+ (-98) + (97) +...+96
= ( -96+96) + (-95+95) +...+ (-99) + (-98) +(-97)
= -294
Vậy...
Bài 5
Ta có (5+n)=(n+1)+4
Vì (n+1)\(⋮\)(n+1)
Để [(n+1)+4]\(⋮\)(n+1)<=>4\(⋮\)(n+1)<=>(n+1)\(\in\)Ư(4)={±1;±2;±4}
Ta có bảng sau
n+1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -5 | -3 | -2 | 0 | 1 | 3 |
Vậy...
(n^2 - 3) . (n^2 - 36) < 0
<=> n^2 - 3 và n^2 - 36 trái dấu
<=> n^2 - 3 > 0 ; n^2 - 36 < 0 hoặc n^2 - 3 < 0 ; n^2 - 36 > 0
<=> n > \(\sqrt{3}\) ; n < 6 hoặc n < \(\sqrt{3}\) ; n > 6 (loại)
Vậy \(\sqrt{3}\) < n < 6 thỏa mãn