K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

(n^2 - 3) . (n^2 - 36) < 0

<=> n^2 - 3 và n^2 - 36 trái dấu

<=> n^2 - 3 > 0 ; n^2 - 36 < 0 hoặc n^2 - 3 < 0 ; n^2 - 36 > 0

<=> n > \(\sqrt{3}\) ; n < 6 hoặc n < \(\sqrt{3}\) ; n > 6 (loại)

Vậy \(\sqrt{3}\) < n < 6 thỏa mãn          

 

Bài 1:

(n+5) / (n+1) 

= (n+1+4) / (n+1) 

= 1 + 4/(n+1)

Để 4 chia hết cho n+1 thì n+1 là ước dương của 4 vì số nguyên tố ko bao giờ âm

Suy ra n+1 =(1;2;4)

Thử từng trường hợp với n+1 =1 ; n+1 =2; n+1=4 (bạn tự làm)

Suy ra n=3 

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

23 tháng 1 2017

hơi nhiều nhỉ

23 tháng 1 2017

Sao bạn đăng nhiều thế !

hoa mắt thì làm sao giải cho bạn được

20 tháng 2 2020

*Bạn ơi, bài 3 mình ko hiểu đề cho lắm ấy?? Bạn xem lại đề thử nhé!! Nhớ tk giúp mình nha 😊*

Bài 1:

Tổng các số nguyên x thỏa mãn bài toán là:

   -99+(-98)+(-97)+(-96)+...+95+96

= -99+(-98)+(-97)+(-96+96)+(-95+95)+...+(-1+1)+0

= -99+(-98)+(-97)+0+0+...+0

= -294

Bài 4:

     n-1 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}

=> n thuộc {2;0;4;-2;6;-4;16;-14}

Mà n thuộc N

Do đó: n thuộc {2;0;4;6;16}

Vậy...

Bài 5:

      5+n chia hết cho n+1

=> (n+1)+4 chia hết cho n+1

Vì n+1 chia hết cho n+1

Nên 4 chia hết cho n+1

Hay n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

=> n thuộc {0;-2;1;-3;3;-5}

Vậy...

21 tháng 2 2020

Bài 1: Các số nguyên x thỏa mãn là: -99; -98 ; -97;....; 96

Tổng các số nguyên x là: (-99)+ (-98) + (97) +...+96

= ( -96+96) + (-95+95) +...+ (-99) + (-98) +(-97)

= -294

Vậy...

21 tháng 2 2020

Bài 5 

Ta có (5+n)=(n+1)+4

Vì (n+1)\(⋮\)(n+1)

Để [(n+1)+4]\(⋮\)(n+1)<=>4\(⋮\)(n+1)<=>(n+1)\(\in\)Ư(4)={±1;±2;±4}

Ta có bảng sau

n+1-4-2-1124
n-5-3-2013

Vậy...