K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

a ) Ta có BM=MD (gt)

=> ΔΔMBD cân tại M

Mặt khác AMBˆ=ACBˆAMB^=ACB^ ( Hai góc nội tiếp chắn cung AB)

Mà ACBˆ=600ACB^=600( tam giác ABC đều)

Suy ra AMBˆ=600hayDMBˆ=600AMB^=600hayDMB^=600

Vậy ΔMBDΔMBD đều

b) Ta có ΔMBDΔMBD đều ( CMT)

Suy ra : DMBˆ=DBCˆ+CBMˆ=600DMB^=DBC^+CBM^=600(1)

Lại có : tam giác ABC đều (gt)

Suy ra : ABCˆ=ABDˆ+DBCˆ=600ABC^=ABD^+DBC^=600(2)

Từ (1) và (2) suy ra ABDˆ=MBCˆABD^=MBC^

Xét hai tam giác ABD và CBM ta có

BC=BA (gt)

ABDˆ=MBCˆ(cmt)ABD^=MBC^(cmt)

BD=BM( tam giác MBD đều)

=> ΔABD=ΔCBM(c.g.c)ΔABD=ΔCBM(c.g.c)

c)ΔABD=ΔCBM(cmt)ΔABD=ΔCBM(cmt)

SUy ra AD=CM

mà AM=AD+DM

SUy ra MA=MC+MD

28 tháng 5 2021

a.Có MA,MB là tiếp tuyến của (O) cắt nhau tại M (gt)
=> MA=MB
Có MA,MC là tiếp tuyến của (O') cắt nhau tại M (gt)
=> MA=MC
Bắc cầu ta được MA=MB=MC

11 tháng 4 2022