K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Theo đề bài, ta có: m < n

=> m + m + m + m < n + n + n + n

hay 4m < 4n

Mà 4m < 4n nên 4m + 1 < 4n +1

=> 4m + 1 < 4n +5

Vậy 4m + 1 < 4n +5

4 tháng 5 2017

a. Ta có: m<n

<=> 2m<2n (nhân cả hai vế với 2)

<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm

b. Ta có: m<n

<=> m-2<n-2 (cộng cả hai vế với -2)

<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

c. Ta có: m<n

<=> -6m>-6n (nhân cả hai vế với -6)

<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm

d. Ta có: m<n

<=> 4m<4n (nhân cả hai vế với 4)

<=> 4m+1<4n+1 (cộng cả hai vế với 1)

mà 4n+1<4n+5

=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)

5 tháng 5 2017

a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)

\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)

mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)

\(\Rightarrow4m+1< 4n+5\)

b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)

\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)

mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)

\(\Rightarrow3-5m>1-5n\)

28 tháng 10 2017

Ta có: m < n ⇒ 4m < 4n ⇒ 4m + 1 < 4n + 1 (1)

1 < 5 ⇒ 4n + 1 < 4n + 5 (2)

Từ (1) và (2) suy ra: 4m + 1 < 4n + 5

5 tháng 5 2019

a) -8m + 2
 Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:

-8m + 2 < - 8n + 2

b) 6n - 1 với 6m + 2

6n - 1 < 6m + 2

30 tháng 4 2019

Ta có m> n <=> 4m>4n<=> -4m <-4n mà 2<3 <=> 2-4m < 3-4n

18 tháng 5 2020

a, Ta có m<n

⇔m+3 < n+3 (t/c)

b, Ta có m<n

⇔-3m>-3n(t/c)

c, Ta có m<n

⇔4m < 4n (t/c)

⇔4m-7 <4n-7 (t/c)

d, Ta có m<n

⇔-5m > -5n (t/c)

⇔-5m+10> -5n+10(t/c)

Hay 10-5m > 10-5n

chúc bạn học tốt !

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)Chứng minh rằng nếu P là số chính phương thì m=nGiả sử \(m>n>1\) Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)\(=-4n^3+4< 0\) với  \(\forall n>1\)\(\Rightarrow\left(mn^2-2\right)^2<...
Đọc tiếp

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)

Chứng minh rằng nếu P là số chính phương thì m=n

Giả sử \(m>n>1\)

 Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)

\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)

\(=-4n^3+4< 0\) với  \(\forall n>1\)

\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)

Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)

\(=m^2n^4-4mn^2+4n^3-m^2n^4\)

\(=-4mn^2+4n^3\)

\(=-4n^2\left(m-n\right)< 0\) với \(\forall m>n>1\)

\(\Rightarrow n^2\left(m^2n^2-4m+4n\right)< m^2n^4\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4m+4n\right)< m^2n^4\)

\(\Rightarrow\left(\frac{mn^2-2}{n}\right)^2< P< \left(mn\right)^2\)

Xét \(\frac{mn^2-2}{n}-\left(mn-1\right)=\frac{n-2}{n}\ge0\)  với \(\forall n\ge2\)

\(\Rightarrow\frac{mn^2-2}{n}\ge mn-1\)

\(\Rightarrow\left(mn-1\right)^2< P< \left(mn\right)^2\left(VL\right)\)

Kẹp giữa 2 số chính phương liên tiếp thì không tồn tại số chính phương nào.OK?

Giả sử \(m< n\)

\(\Rightarrow P>m^2n^2\left(3\right)\)

Xét \(m^2n^2-4m+4n-\left(mn+2\right)^2\)

\(=m^2n^2-4m+4n-m^2n^2-4mn-4\)

\(=n-m-mn-1=n\left(1-m\right)-m-1< 0\) 

\(\Rightarrow P< \left(mn+2\right)^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\left(mn\right)^2< P< \left(mn+2\right)^2\)

Để P là số chính phương thì \(P=\left(mn+1\right)^2\)

\(\Rightarrow m^2n^2-4m+4n=m^2n^2+2mn+1\)

\(\Rightarrow-4m+4n-2mn=1\) quá VL

Với  \(m=n\Rightarrow P=m^2n^2=\left(mn\right)^2\left(Lscp\right)\) cực kỳ HL:v

P/S:Ko chắc đâu nha.m thử làm bài 1 cấy.t cụng ra rồi nhưng coi cách m cho nó chắc:v Định dùng cách kẹp khác mà đề cho chặt quá:((

 

 

1
15 tháng 11 2019

 \(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)

 \(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)

\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)

Đặt : \(F\left(x\right)=ax+b\)

Với x=1  từ (1) và (3) 

\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow a+b=4\)(*)

Với x=3 từ (3) và (2)

\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)

\(\Rightarrow3a+b=14\)(**)

Từ (*) và (**)

\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)

\(\Rightarrow F\left(x\right)=ax+b=5x-1\)

T lm r, ko bt có đúng ko:))