K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

a, Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\Rightarrow x=6;y=8\)

b, Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{4}=\frac{x^2+y^2}{9+16}=\frac{25}{25}=1\Rightarrow x=3;y=4\)

17 tháng 12 2017

Ta có: x/3=y/-5 và x-y=32

=> x/3=y/4=x-y/3-(-5)=32/8=4

=> x=4.3=12

     y=4.(-5)=-20

Vậy x=12

       y=-20

13 tháng 12 2020

a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)

TH1: \(x=y\)

Phương trình \(\left(1\right)\) tương đương:

\(x^2=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)

TH2: \(x=4-y\)

Phương trình \(\left(2\right)\) tương đương:

\(y^2=4y-4\)

\(\Leftrightarrow y^2-4y+4=0\)

\(\Leftrightarrow\left(y-2\right)^2=0\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2\)

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

24 tháng 9 2017

x/2 = y/5

=> xy/10 = x/2 = y/5 = 10/10 = 1

=> x = 1x 2 = 2

     y = 1 x 5 = 5

24 tháng 9 2017

Đặt \(k=\frac{x}{2}=\frac{y}{5}\)

=> \(k^2=\frac{xy}{2.5}=\frac{xy}{10}=\frac{10}{100}=1\)

=> k = -1;1

+ k = -1 thì \(\frac{x}{2}=-1\Rightarrow x=-2\)

                 \(\frac{y}{5}=-1\Rightarrow y=-5\)

+ k = 1 thi \(\frac{x}{2}=1\Rightarrow x=2\)

                 \(\frac{y}{5}=1\Rightarrow y=5\) 

Vậy .............................

5 tháng 8 2018

Đăng ít 1 thôi, nhiều quá bon nó không giải đâu

a: Ta có: 2x/3=3y/4=4z/5

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Đặt \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=k\)

=>x=3/2k; y=4/3k; z=5/4k

\(xy+yz-xz=32\)

\(\Leftrightarrow\dfrac{3}{2}k\cdot\dfrac{4}{3}k+\dfrac{4}{3}k\cdot\dfrac{5}{4}k-\dfrac{3}{2}k\cdot\dfrac{5}{4}k=32\)

\(\Leftrightarrow k^2\cdot\dfrac{43}{24}=32\)

\(\Leftrightarrow k^2=\dfrac{768}{43}\)

Trường hợp 1: \(k=\dfrac{16\sqrt{129}}{43}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{24\sqrt{129}}{43}\\y=\dfrac{64\sqrt{129}}{129}\\z=\dfrac{20\sqrt{129}}{43}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{16\sqrt{129}}{43}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{24\sqrt{129}}{43}\\y=-\dfrac{64\sqrt{129}}{129}\\z=-\dfrac{20\sqrt{129}}{43}\end{matrix}\right.\)

b: Ta có: 4x=3y

nên x/3=y/4=k

=>x=3k; y=4k

\(x^2-xy+y^2=32\)

\(\Leftrightarrow9k^2-12k^2+16k^2=32\)

\(\Leftrightarrow13k^2=32\)

Trường hợp 1: \(k=\dfrac{32\sqrt{13}}{13}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{96\sqrt{13}}{13}\\y=\dfrac{128\sqrt{13}}{13}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{32\sqrt{13}}{13}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{96\sqrt{13}}{13}\\y=-\dfrac{128\sqrt{13}}{13}\end{matrix}\right.\)