K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Là số chẵn

Gọi hai số lẻ liên tiếp là 2n-1 và 2n-3

Ta có: \(\left(2n-1\right)^2-\left(2n-3\right)^2\)

\(=\left(2n-1-2n+3\right)\left(2n-1+2n-3\right)\)

\(=2\left(4n-4\right)⋮2\)

10 tháng 7 2017

gọi 2 số nguyên liên tiếp là a và a+1 .Ta có:

(a+1)2 - a2 =a2+2a+1-a2

                  =2a+1

vì 2a là số chẵn nên 2a+1 là số lẻ

=> KL

28 tháng 9 2016

Gọi n; n+1 là hai số tự nhiên liên tiếp

Ta có \(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1.\)

Nếu n lẻ => 2n chẵn => 2n+1 lẻ

Nếu n chẵn => 2n chẵn => 2n+1 lẻ

=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp

24 tháng 7 2017

(n+1)2−n2=n2+2n+1−n2=2n+1.Nếu n lẻ => 2n chẵn => 2n+1 lẻNếu n chẵn => 2n chẵn => 2n+1 lẻ=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp Đúng 0

7 tháng 11 2017

bạn lấy vd từng số ra nha! chúc học tốt

20 tháng 7 2018

Gọi 2 số lẻ liên tiếp là:   \(2k-1\)và   \(2k+1\)

Xét hiệu:    \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)

                  \(=4k^2+4k+1-\left(4k^2-4k+1\right)\)

                  \(=8k\) \(⋮\)\(8\)

\(\Rightarrow\)\(A\)\(⋮\)\(8\)

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

25 tháng 6 2015

Gọi 2k+1 va 2p+1 la các số lẻ 
hieu cac binh phuong cua 2 so le la`: 
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p) 
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p... 
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8 
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

25 tháng 6 2015

sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8