câu b bài 84 ạ giúp với ;^;giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
Bài III.2b.
Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)
hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có :
\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)
\(=m^2+2m+1-4m-16\)
\(=m^2-2m-15>0\).
\(\Rightarrow m< -3\) hoặc \(m>5\).
Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)
Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).
Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)
Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)
\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).
Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).
Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt :
\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)
Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).
Vậy : Không có giá trị m thỏa mãn đề bài.
Bài IV.b.
Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).
Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).
Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).
Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).
Lại có : \(BC=MB+MC=2MB\)
\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)
Tính diện tích hình quạt tròn
Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).
\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)
84.
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) đồng thời SB là hình chiếu vuông góc của SC lên (SAB)
\(\Rightarrow\widehat{BSC}\) là góc giữa SC và (SAB)
\(\Rightarrow\widehat{BSC}=30^0\)
\(\Rightarrow SB=\dfrac{BC}{tan30^0}=a\sqrt{3}\)
\(\Rightarrow SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)
\(V=\dfrac{1}{3}SA.BC^2=\dfrac{a^3\sqrt{2}}{3}\)
87.
Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác cân)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\)
Lại có BC là giao tuyến (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}=60^0\)
\(AM=\sqrt{AB^2-BM^2}=\sqrt{4a^2-\left(\dfrac{3a}{2}\right)^2}=\dfrac{a\sqrt{7}}{2}\)
\(SA=AM.tan60^0=\dfrac{a\sqrt{21}}{2}\)
\(V=\dfrac{1}{3}SA.\dfrac{1}{2}.AM.BC=\dfrac{7a^3\sqrt{3}}{8}\)
Ta có:x2+y2=25➝(x+y)2-2xy=25➝(x+y)2=1➝x+y=1.Đến đây bạn tự làm.
a: =>x=y+11
xy=60
\(\Leftrightarrow y^2+11y-60=0\)
\(\Leftrightarrow\left(y+15\right)\left(y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-15\\y=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=15\end{matrix}\right.\)
a)
$Mg + H_2SO_4 \to MgSO_4 + H_2$
$Mg + 2H_2SO_{4_{đặc}} \to MgSO_4 + SO_2 + 2H_2O$
$Cu + 2H_2SO_{4_{đặc}} \to CuSO_4 + SO_2 + 2H_2O$
Theo PTHH :
n Mg = n H2 = 0,448/22,4 = 0,02(mol)
Mặt khác : n SO2 = 2,688/22,4 =0,12(mol)
4m gam X chứa 4n Cu và 0,02.4 = 0,08 mol Mg
Theo PTHH : n SO2 = n Cu + n Mg
=> n Cu = (0,12- 0 ,08)/4 = 0,01(mol)
Suy ra: m = 0,01.64 + 0,02.24 = 1,12(gam)
b) $SO_2 + Br_2 + 2H_2O \to 2HBr + H_2SO_4$
n Br2 = n SO2 = 0,12(mol)
=> V dd Brom = 0,12/0,02 = 6(lít)
\(21,\\ b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=2\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\\ \Leftrightarrow\left|\sqrt{x-1}-1\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\1-\sqrt{x-1}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\\sqrt{x-1}=-1\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=10\)
a, Ta có :
A = \(\dfrac{a}{a+b}\) + \(\dfrac{b}{b+c}\) + \(\dfrac{c}{c+a}\) (a; b; c thuộc N*)
Ta có :
\(\dfrac{a}{a+b}\) < 1 => \(\dfrac{a}{a+b}\) < \(\dfrac{a+c}{a+b+c}\)
Tương tự :
\(\dfrac{b}{b+c}\) < \(\dfrac{b+a}{b+c+a}\)
\(\dfrac{c}{c+a}\) < \(\dfrac{c+b}{c+a+b}\)
=> A < \(\dfrac{2\left(a+b+c\right)}{a+b+c}\)= 2 (1)
Mặt khác :
\(\dfrac{a}{a+b+c}\) < \(\dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c}\) < \(\dfrac{b}{b+c}\)
\(\dfrac{c}{a+b+c}\) < \(\dfrac{c}{c+a}\)
=> \(\dfrac{a+b+c}{a+b+c}\) < A
1 < A (2)
Từ (1) và (2) => 1 < A < 2
=> A ko thể là 1 số nguyên ( do 1 và 2 là 2 số nguyên liên tiếp)
Câu b tương tự nha bn!!
Chúc bn học tốt!!
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\\\dfrac{b}{b+c+d}< \dfrac{b+a}{a+b+c+d}\\\dfrac{c}{c+d+a}< \dfrac{c+b}{a+b+c+d}\\\dfrac{d}{d+a+b}< \dfrac{b+c}{a+b+c+d}\end{matrix}\right.\)
\(\Rightarrow B=\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a+d}{a+b+c+d}+\dfrac{b+a}{a+b+c+d}+\dfrac{c+b}{a+b+c+d}+\dfrac{b+c}{a+b+c+d}\)
\(=\dfrac{2a+2b+2c+2d}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow B< 2\) (1)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\\\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\\\dfrac{c}{c+d+a}>\dfrac{c}{a+b+c+d}\\\dfrac{d}{d+a+b}>\dfrac{d}{a+b+c+d}\end{matrix}\right.\)
\(\Rightarrow B=\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a+b+c+d}{a+b+c+d}=1\)
\(\Rightarrow B>1\) (2)
Từ (1) và (2) \(\Rightarrow1< B< 2\)
\(\Rightarrow B\notin Z\left(đpcm\right)\)
Vậy...