\(\dfrac{\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}}{1+\dfrac{x+1}{x-1}}=\dfrac{x-1}{2\left(x+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ: $x\neq 0;-1$
\(=\left(\frac{2x^2+3x}{(x+1)(x^2-x+1)}+\frac{x+1}{(x+1)(x^2-x+1)}\right).\frac{x^2-x+1}{x}\)
\(=\frac{2x^2+3x+x+1}{(x+1)(x^2-x+1)}.\frac{x^2-x+1}{x}=\frac{2x^2+4x+1}{x(x+1)}\)
b. ĐKXĐ: $x\neq 0; 1;2$
\(=\frac{x-(x-1)}{x(x-1)}:\frac{(x+1)(x-1)-(x-2)(x+2)}{(x-2)(x-1)}=\frac{1}{x(x-1)}:\frac{3}{(x-2)(x-1)}\)
\(=\frac{1}{x(x-1)}.\frac{(x-2)(x-1)}{3}=\frac{x-2}{3x}\)
c. ĐKXĐ: $x\neq 0; -1$
\(=\frac{x+1+x^2}{x(x+1)}.\frac{x(x+1)}{x}=\frac{x^2+x+1}{x}\)
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
\(a,=\left(\dfrac{1-x}{x}+\dfrac{x^3-x}{x}\right)\times\dfrac{x}{x-1}\\ =\dfrac{1-x+x^3-x}{x}\times\dfrac{x}{x-1}\\ =\dfrac{1-2x+x^3}{x-1}\\ b,=\left(\dfrac{x-x^2}{x.x^2}\right).\dfrac{x^2}{y}+\dfrac{x}{y}\\ =\dfrac{x-x^2}{xy}+\dfrac{x}{y}\\ =\dfrac{x-x^2+x^2}{xy}=\dfrac{x}{xy}=\dfrac{1}{y}\)
\(c,=\dfrac{3}{x}-\dfrac{2}{x}\times x+\dfrac{x}{3}\\ =\dfrac{3}{x}-2+\dfrac{x}{3}\\ =\dfrac{3-2x+x^2}{3x}\)
a)
\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{x+1-x}{x\left(x+1\right)}=\dfrac{1}{x\left(x+1\right)}\left(đpcm\right)\)
b)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}\)
Điều kiện \(\left\{{}\begin{matrix}x\ne-1\\x\ne0\\x\ne1\end{matrix}\right.\)
Đặt \(\dfrac{x+1}{x-1}=a\) thì pt trở thành
\(\dfrac{a-\dfrac{1}{a}}{1+a}=\dfrac{1}{2a}\)
\(\Leftrightarrow2a=3\)
\(\Leftrightarrow a=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x+1}{x-1}=\dfrac{3}{2}\)
\(\Leftrightarrow x=5\)
Hung nguyen giải rồi đó cô bạn ạ tiennumcmusa :)