Cho \(\Delta ABC\).Kẻ AH vuông góc với BC.CMR : \(BC^2=BH^2+CH^2+2AH^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé
a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:
\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)
Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)
Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)
b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:
\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)
Áp dụng định lí Pitago cho 3 tam giác vuông ABH,ACH,ABC ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+CH^2=AC^2\)
\(AB^2+AC^2=BC^2\)
Cộng theo vế ba đẳng thức trên và rút gọn ta được \(2AH^2+BH^2+CH^2=BC^2\).
Sửa đề: ChoΔABC vuông tại A
\(BC^2=\left(BH+CH\right)^2\)
\(=BH^2+CH^2+2\cdot BH\cdot CH\)
\(=BH^2+CH^2+2\cdot AH^2\)