4x + 2x = 540
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne\pm\frac{1}{2}\)
\(E=\left(\frac{\left(4x^2+2x\right)\left(1+4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}-\frac{\left(4x^2-2x\right)\left(1-4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}\right):\left(\frac{\left(1+2x\right)\left(1+2x\right)}{\left(1-2x\right)\left(1+2x\right)}-\frac{\left(1-2x\right)\left(1-2x\right)}{\left(1+2x\right)\left(1-2x\right)}\right)\)
\(E=\left(\frac{16x^4+8x^3+4x^2+2x+16x^4-8x^3-4x^2+2x}{1-16x^4}\right):\left(\frac{1+2x+x^2-1+2x-x^2}{1-4x^2}\right)\)
\(E=\frac{32x^4+4x}{1-16x^4}:\frac{4x}{1-4x^2}\)
\(E=\frac{4x\left(8x^3+1\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{4x}\)
\(E=\frac{8x^3+1}{1+4x^2}\)
Study well
E=\(\left(\frac{4x^2+2x}{1-4x^2}-\frac{4x^2-2x}{1+4x^2}\right):\left(\frac{1+2x}{1-2x}-\frac{1-2x}{1+2x}\right)\)
E=\(\left(\frac{\left(4x^2+2x\right)\left(1+4x^2\right)-\left(4x^2-2x\right)\left(1-4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}\right):\)\(\left(\frac{\left(1+2x\right)^2-\left(1-2x\right)^2}{\left(1-2x\right)\left(1+2x\right)}\right)\)
E=\(\frac{4x^2+16x^4+2x+8x^3-\left(4x^2-16x^4-2x+8x^3\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}:\)\(\left(\frac{\left(1+4x+4x^2\right)-\left(1-4x+4x^2\right)}{\left(1-2x\right)\left(1+2x\right)}\right)\)
E=\(\frac{4x^2+16x^4+2x+8x^3-4x^2+16x^4+2x-8x^3}{\left(1-4x^2\right)\left(1+4x^2\right)}:\)\(\left(\frac{1+4x+4x^2-1+4x-4x^2}{\left(1-2x\right)\left(1+2x\right)}\right)\)
E=\(\frac{16x^4+2x+16x^4+2x}{\left(1-4x^2\right)\left(1+4x^2\right)}:\)\(\left(\frac{8x}{\left(1-2x\right)\left(1+2x\right)}\right)\)
E=\(\frac{32x^4+8x}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{8x}\)
E=\(\frac{8x\left(4x^3+1\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{8x}\)
E=\(\frac{4x^3+1}{1+4x^2}\)
a)2x( 2x-1) -(2x-1)
=(2x-1)(2x-1)
=(2x-1)2
b)2x( 4x + 2x + 1) - ( 4x + 2x +1)
=(2x-1)(4x+2x+1)
=(2x-1)(6x+1)
a) \(2x\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(2x-1\right)\)
b) \(2x\left(4x+2x+4\right)-\left(4x+2x+4\right)=\left(2x-1\right)\left(4x+2x+4\right)\)
Mik làm cho vui thôi chứ chẳng ai T mik đâu
E=\(\frac{\left(4x^2+2x\right)\left(1+4x^2\right)-\left(4x^2-2x\right)\left(1-4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}:\frac{\left(1+2x\right)^2-\left(1-2x\right)^2}{1-4x^2}\)
E=\(\frac{4x^2+16x^4+2x+8x^3-4x^2+16x^2+2x-8x^3}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{1+4x+4x^2-1+4x-4x^2}\)
E=\(\frac{32x^4+4x}{8x\left(1+4x^2\right)}=\frac{8x^3+1}{2\left(1+4x^2\right)}\)
Học sinh nhẩm và ghi kết quả như sau:
500 + 40 = 540
540 – 40 = 500
540 – 500 = 40
\(A=\dfrac{sin^2x-cos^2x.\left(1-cos^2x\right)}{cos^2x-sin^2x.\left(1-sin^2x\right)}=\dfrac{sin^2x-cos^2x.sin^2x}{cos^2x-sin^2x.cos^2x}\\ =\dfrac{sin^2x.\left(1-cos^2x\right)}{cos^2x.\left(1-sin^2x\right)}=\dfrac{sin^2x.sin^2x}{cos^2x.cos^2x}=\dfrac{sin^4x}{cos^4x}.\)
a,sửa đề : \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)
\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)
b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)
\(\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\\ =\dfrac{11x+x-18}{2x-3}\\ =\dfrac{12x-18}{2x-3}\\ =\dfrac{6\left(2x-3\right)}{2x-3}\\ =6\)
\(\dfrac{2x+12}{4x^2-9}+\dfrac{2x+5}{4x-6}\left(ĐKXĐ:x\ne\dfrac{3}{2};x\ne\dfrac{-3}{2}\right)\\ =\dfrac{2x+12}{\left(2x-3\right)\left(2x+3\right)}+\dfrac{2x+5}{2\left(2x-3\right)}\\ =\dfrac{4x+24}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{\left(2x+5\right)\left(2x+3\right)}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x+24+4x^2+6x+10x+15}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x^2+20x+39}{2\left(2x-3\right)\left(2x+3\right)}\)
\(\dfrac{x}{2x+1}+\dfrac{-1}{4x^2-1}+\dfrac{2-x}{2x-1}\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne\dfrac{-1}{2}\right)\\ =\dfrac{x\left(2x-1\right)-1+\left(2-x\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{2x^2-x-1+4x+2-2x^2-x}{\left(2x-1\right)\left(2x+1\right)}\\ =\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{1}{2x-1}\)
4x + 2x = 540
=> x(4+2)=540
=> 6x = 540
=> x = 540 : 6
=> x=90