phân tích nha
4x mũ 2 -36x+56
tìm x
x mũ 2- 4x+4=9[x-2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x2 + 1 )2 - 4x2 = ( x2 + 1 )2 - ( 2x )2 = ( x2 - 2x + 1 )( x2 + 2x + 1 ) = ( x - 1 )2( x + 1 )2
[x mũ 2 +1]^2 - 4x^2 = (x^2 + 1)^2 -4x^2 = (x-1)^2(x+1)^2
6, \(x^2y+xy^2-4x-4y=xy\left(x+y\right)-4\left(x+y\right)=\left(xy-4\right)\left(x+y\right)\)
7, \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(2x-y\right)\)
8, xem lại đề bạn nhé
9, \(4x^2-y^2+8y-16=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)
\(=\left(2x-y+4\right)\left(2x+y-4\right)\)
Trả lời:
6, x2y + xy2 - 4x - 4y = ( x2y + xy2 ) - ( 4x + 4y ) = xy ( x + y ) - 4 ( x + y ) = ( x + y )( xy - 4 )
7, 10ax - 5ay - 2x + y = ( 10ax - 5ay ) - ( 2x - y ) = 5a ( 2x - y ) - ( 2x - y ) = ( 2x - y )( 5a - 1 )
8, Sửa đề: x3 - 2x2 + 2x - 4 = ( x3 - 2x2 ) + ( 2x - 4 ) = x2 ( x - 2 ) + 2 ( x - 2 ) = ( x - 2 )( x2 + 2 )
9, 4x2 - y2 + 8y - 16 = 4x2 - ( y2 - 8y + 16 ) = 4x2 - ( y - 4 )2 = ( 2x - y + 4 )( 2x + y - 4 )
6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x =x (x+2) (x^2-6x+4)
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2 = -(y-x^2-x) (y+x^2+x)
10, 4x mũ 2 ( x + y ) -x - y = (2x-1) (2x+1) (y+x)
\(1,\)
\(\left(x^2-9y^2\right)\left(4x+12y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-4\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x-3y-4\right)\)
\(3,\)
\(-x^2+2xy-y^2+25\)
\(=-\left(x^2-2xy+y^2\right)+25\)
\(=25-\left(x-y\right)^2\)
\(=5^2-\left(x-y\right)^2\)
\(=\left(5-x+y\right)\left(5+x-y\right)\)
f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )
g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )
h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )
j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
Trả lời:
f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )
g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )
h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) = x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )
j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
\(1,x^2-y^2+4x-4y\)
\(\left(x-y\right)\left(x+y\right)+4\left(x-y\right)\)
\(\left(x-y\right)\left(x+y+4\right)\)
\(x^2+2x-4y^2-4y\)
\(\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)\)
\(\left(x-2y\right)\left(x+2y+2\right)\)
\(3,3x^2-4y+4x-3y^2\)
\(3\left(x^2-y^2\right)-4\left(x-y\right)\)
\(3\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(\left(x-y\right)\left(3x+3y-4\right)\)
\(x^4-6x^3+54x-81\)
\(x^4+3x^3-9x^3+27x^2-27x^2+81x-27x-81\)
\(\left(x^4+3x^3\right)-\left(9x^3+27x^2\right)+\left(27x^2+81x\right)-\left(27x+81\right)\)
\(x^3\left(x+3\right)-9x^2\left(x+3\right)+27x\left(x+3\right)-27\left(x+3\right)\)
\(\left(x+3\right)\left(x^3-9x^2+27x-27\right)\)
\(\left(x+3\right)\left(x-3\right)^3\)
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
a)\(6x-9-x^2\)
\(=-\left(x^2+6x+9\right)\)
\(=-\left(x+3\right)^2\)
b)\(x^2+4y^2+4xy\)
\(=\left(x+2y\right)^2\)
c)\(x^2+8x+16\)
\(=\left(x+4\right)^2\)
d)\(9x^2-12xy+4y^2\)
\(=\left(3x-2y\right)^2\)
e)\(-25x^2y^2+10xy-1\)
\(=-\left(25x^2y^2-10xy+1\right)\)
\(=-\left(5xy-1\right)^2\)
f)\(4x^2-4x+1\)
\(=\left(2x-1\right)^2\)
j)\(x^2+6x+9\)
\(=\left(x+3\right)^2\)
h)\(9x^2-6x+1\)
\(=\left(3x-1\right)^2\)
#H
a, 6x - 9 - x2 = - x2 + 6x - 9 = - (x2 - 6x + 9) = - (x - 3)2
b, x2 + 4y2 + 4xy = x2 + 2. x . 2y + (2y)2 = (x + 2y)2
c, x2 + 8x + 16 = x2 + 2 . x . 4 + 42 = (x + 4)2
d, 9x2 - 12xy + 4y2 = (3x)2 - 2 . 3x . 2y + (2y)2 = (3x - 2y)2
e, - 25x2y2 + 10xy - 1 = - (25x2y2 - 10xy + 1) = - [(5xy)2 - 2 . 5xy + 1] = - (5xy - 1)2
f, 4x2 - 4x + 1 = (2x)2 - 2 . 2x + 1 = (2x - 1)2
j, x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
h, 9x2 - 6x + 1 = (3x)2 - 2 . 3x + 1 = (3x - 1)2
Trả lời:
5, x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y ) ( x + 2 + y )
6, x2 + 2x - 4y2 - 4y
= ( x2 - 4y2 ) + ( 2x - 4y )
= ( x - 2y ) ( x + 2y ) + 2 ( x - 2y )
= ( x - 2y ) ( x + 2y + 2 )
7, 3x2 - 4y + 4x - 3y2
= ( 3x2 - 3y2 ) + ( 4x - 4y )
= 3 ( x2 - y2 ) + 4 ( x - y )
= 3 ( x - y ) ( x + y ) + 4 ( x - y )
= ( x - y ) [ 3 ( x + y ) + 4 ]
= ( x - y ) ( 3x + 3y + 4 )
8, x4 - 6x3 + 54x - 81
= ( x4 - 81 ) - ( 6x3 - 54x )
= ( x2 - 9 ) ( x2 + 9 ) - 6x ( x2 - 9 )
= ( x2 - 9 ) ( x2 + 9 - 6x )
= ( x - 3 ) ( x + 3 ) ( x - 3 )2
= ( x - 3 )3 ( x + 3 )
a, \(x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
b, \(x^2+2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)=\left(x-2y\right)\left(x+2+2y\right)\)
c, \(3x^2-4y+4x-3y^2=3\left(x-y\right)\left(x+y\right)-4\left(y-x\right)=\left(x-y\right)\left(3x+3y+4\right)\)
d, \(x^4-6x^3+54x-81=\left(x^2+9\right)\left(x-3\right)\left(x+3\right)-6x\left(x^2-9\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3\left(x+3\right)\)
Phân tích:
\(4x^2-36x+56\)
\(=\left(4x^2-28x\right)-\left(8x-56\right)\)
\(=4x\left(x-7\right)-8\left(x-7\right)\)
\(=\left(x-7\right)\left(4x-8\right)\)
\(=4\left(x-7\right)\left(x-2\right)\)
Tìm x:
\(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=11\end{cases}}\)