Cho A = 119 + 118 + 117 + ... + 11+ 1 . Chung minh A chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Bài 1:
a) A = 210+211+212
=210*(1+21+22)
=210*(1+2+4)
=7*210 chia hết 7
Đpcm
b)7*32=244
=32+64+128
=25+26+27
a,10^33+8 chia hết cho 18
1033 + 8 = 10...000 ( 33 chữ số 0 ) + 8 = 10...008 ( 32 chữ số 0 ) , có :
- Chữ số tận cùng 8 chia hết cho 2 . ( 1 )
- Tổng các chữ số : 1 + 0 +...+ 0 + 0 + 8 = 9 chia hết cho 9 . ( 2 )
Từ ( 1 ) và ( 2 ) => 10^33 + 8 chia hết cho 18 .
b,10^10+14 chia hết cho 6
1010 + 14 = 10...000 ( 10 chữ số 0 ) + 14 = 10...014 ( 8 chữ số 0 ) , có :
- Chữ số tận cùng 4 chia hết cho 2 . ( 1 )
- Tổng các chữ số : 1 + 0 +...+ 0 + 1 + 4 = 6 chia hết cho 3 . ( 2 )
Từ ( 1 ) và ( 2 ) => 10^10 + 14 chia hết cho 6 .
Còn lại bn tự làm nha .
Ta có
+) \(10^{33}+8=100......00000008⋮9\) (1)
( 33 chữ số 0 )
+) 1033 chia hết cho 2
8 chia hết cho 2
=> 1033+8 chia hết cho 2 (2)
Mà (2;3)=1
Từ (1) và (2) => \(10^{33}+8⋮2.9=18\)
b) Ta có
+) \(10^{10}+14=100...014⋮3\) (4)
( 9 chữ số 0)
+) 1010 chia hết cho 2
14 chia hết cho 2
=> 1010+14 chia hết cho 2 (4)
Mà (2;3)=1
Từ (1) và (2)
=>\(10^{10}+14⋮2.3=6\)
c)
MÌnh sửa một chút 119=>119
Có lẽ do đánh vội nên bạn viết sai :))
Ta thấy A có 20 số hạng
Mà mỗi số hạng đều có tận cùng là 1
=>\(A=\left(\overline{....1}\right)+\left(\overline{....1}\right)+.....+\left(\overline{....1}\right)=\left(\overline{....20}\right)\)
chia hết cho 5
d)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)=3\left(2+2^3+....+2^{59}\right)⋮3\left(5\right)\)
\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)=7\left(2+2^4+....+2^{58}\right)⋮7\)
\(B=2\left(1+2^2\right)+2^2\left(1+2^2\right)+....+2^{58}\left(1+2^2\right)=5\left(2+2^2+...+2^{58}\right)⋮5\left(6\right)\)
Mà (3;5)=1
Từ (5) và (6)
=>\(B⋮3.5=15\)
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
sửa đề : CMR \(A=1^{19}+1^{18}+...+1^1+1\)
A = 1 + 1 + ... + 1 + 1 ( 20 số hạng )
A = 20 chia hết cho 5 => A chia hết cho 5 ( đpcm )
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
A=119+118+117+...+11+1
=>11A= 1110+119+118+...+112+11
=> 11A-A= (1110+119+118+...+112+11)-(119+118+117+...+11+1)
=> 10A= 1110-1
=>A= (1110-1):10
Ta thay: 1110 co tan cung la 1=> 1110-1 co tan cung la 0=> (1110-1):10 co tan cung la 0 chia het cho 5
Vay A chia het cho 5
**** cho minh nhe