giá trị biểu thức x+2y+3z biet (x+2y)^2 +(y-1)^2+(x-2)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=0\\y-1=0\\x-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=0\\y=1\\x-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\\x-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\\z=-2\end{cases}}\)
Do đó: \(x+2y+3\text{z}=-2+2-2.3=-6\)
Vậy: \(M=-6\)
Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4
= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)
= (x + y + 1)(x2 - y2) + 2(0 + 1)
= 0(x2 - y2) + 2.1
= 2
Vậy H = 2
Chúc bn học tốt!
\(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-3y=0\\2y+3z=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3z=-2y\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3y}{2}\\z=\dfrac{-2y}{3}\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=0\)