K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Mũ 2 rồi phân phối là xong mà ,đâu cần chứng minh

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

23 tháng 12 2017

cảm ơn

29 tháng 5 2018

Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)

=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)

dấu = xảy ra <=> x=y=z>=0

29 tháng 5 2018

Thanks

23 tháng 8 2019

\(6\le\sqrt{3\left(x^2+y^2+z^2\right)}+x^2+y^2+z^2\)

Đặt \(\sqrt{x^2+y^2+z^2}>0\) thì:

\(t^2+\sqrt{3}t-6\ge0\)\(\Leftrightarrow t\ge\sqrt{3}\left(\text{do t>0 nên loại th kia }\right)\Rightarrow x^2+y^2+z^2\ge3^{\left(đpcm\right)}\)

Đúng ko ta?

17 tháng 8 2019

Áp dụng bất đẳng thức Cauchy :

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

Cộng theo vế ta được :

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)

Mặt khác ta cũng có BĐT quen thuộc :

\(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)

Lấy (1) cộng (2) ta được :

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)