Cho tam giác ABC có đường cao ha, hb, hc tỉ lệ thuận với 4; 5; 6. Biết chu vi của tam giác là 37cm. Tính độ dài cạnh nhỏ nhất của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
b: BC=4+9=13cm
AH=căn 4*9=6cm
S ABC=1/2*6*13=39cm2
2S(ABC)=ha.a=hb.b=hc.c suy ra 1/ha+1/hb+1/hc=a/2S+b/2S+c/2S=1/2S .(a+b+c)=1/r(a+b+c) .(a+b+c) =1/r (đpcm) (vì 2S=r(a+b+c))
Gọi độ dai 3 cạnh là a, b, c.
Theo đề bài, ta có:
a\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
gọi ba cạnh của tam giác làa;b;ccm(a;b;c>0)
thèo bài ra có chu vi tam giác là 37cm
=>a+b+c=37(1)
:ba đường cao tỉ lệ với 4;5;6
=>ha/4=hb/5=hc/6
đặt ha/4=hb/5=hc/6=k
=>ha=4k
hb=5k
hc=6k
có diện tích tam giác =ha.a=hb.b=hc.c
thay k vào ct:4k.a=5k.b=6k.c
<=>4a=5b=6c
<=>4a/60=5b/60=6c/60
<=>a/15=b/12=c/10(2)
từ 1,2
áp dụng t/c DTSBN
a/15=b/12=c/10=a+b+c/15+12+10=37/37=1
suy ra:a=15;b=12;c=10(tmđk)
vậy độ dài cạnh nhỏ nhất là 10cm
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
10
đúng đấy
cho xin cách giải đi!!