K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

\(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\Leftrightarrow\frac{1}{1+a}+\frac{1}{1+b}-\frac{2}{1+\sqrt{ab}}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a+1}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{b+1}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)

\(\Leftrightarrow\frac{\sqrt{ab}-a}{\left(a+1\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{ab}-b}{\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)

\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(a+1\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)

\(\Leftrightarrow\frac{-\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\left(b+1\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)

\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a\sqrt{b}+\sqrt{b}-b\sqrt{a}-\sqrt{a}\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)

\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)(đúng với \(ab\ge1\))

Vậy \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)

 Đẳng thức xảy ra khi a = b 

25 tháng 12 2016

Bài này: nên đặt a=x^2; b=y^2

Nội suy  đỡ đau đầu hơn.

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

9 tháng 7 2019

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)

\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)

\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{-a\left(b^2+1\right)\left(a-b\right)+b\left(a-b\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(-ab^2-a+a^2b+b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)\left[ab\left(a-b\right)-\left(a-b\right)\right]}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=1\end{matrix}\right.\)

9 tháng 7 2019

Từ bước 5 sang bước 6 bạn làm như thế nào ạ

10 tháng 8 2017

hi kết bạn nha

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)