Tìm a,b thuộc Z
a) a . b + a - b = 10
b) 2ab - a + b = 7
c) 2a + 2b = 2a+b
f) 2a - 2b = 256
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)2a+2b=2a+b
<=>2a+2b-2a-b=0
<=>\(\left\{\begin{matrix}a\in Z\\b=0\end{matrix}\right.\)
Câu này bạn nên xem lại đề vì mình thấy nó dễ bất thường quá
Chữa lại câu c sau khi bạn Khánh sử đề nha
\(2^a+2^b=2^{a+b}\)
\(\Leftrightarrow2^a+2^b=2^a.2^b\)
\(\Leftrightarrow2^a\left(2^b-1\right)-\left(2^b-1\right)=1\)
\(\Leftrightarrow\left(2^a-1\right)\left(2^b-1\right)=1\)
Ta có bảng sau:
\(2^a-1\) | 1 | -1 |
\(2^b-1\) | 1 | -1 |
a | 1 | Không có a thỏa mãn |
b | 1 | Không có b thỏa mãn |
Vậy a=1; b=1
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh
\(=\left(a+b-c\right)\left(a-b\right)^2\) nha !
P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.
\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)
\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)
\(\Leftrightarrow\text{0=0}\)
\(\Rightarrow\text{ĐPCM}\)
\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)
\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)
\(-2a+4b-2c=2b\)
\(-2a+4b-2c-2b=0\)
\(-2a+2b-2c=0\)
\(đpcm\)
a.
\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)
\(\Rightarrow2F=a-F.b\)
\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)
\(\Rightarrow3F^2\le1\)
\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)
Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a
a)a(b+1)-(b+1)=11<=>(b+1)(a-1)=11
b)2a(2b-1)+2b-1=2.7-1<=>(2b-1)(2a-1)=13
c) \(2^a+2^b=2^{a+b}\Leftrightarrow\left(2^a2^b-2^a\right)-2^b=0\Leftrightarrow2^a\left(2^b-1\right)-\left(2^b-1\right)=1\)\(\Leftrightarrow\left(2^b-1\right)\left(2^a-1\right)=1\) (*)
Con này hơi khác vì là hàm mũ
TH1: a, b thuộc N giải hệ nghiệm nguyên bình thường
(I) \(\left\{\begin{matrix}2^b-1=1\\2^a-1=1\end{matrix}\right.\)=> a=b=1; (II)\(\left\{\begin{matrix}2^b-1=-1\\2^a-1=-1\end{matrix}\right.\) vì 2a&2b>0 => (II) vô Nghiệm
TH2. a,b thuộc Z.(lớp 6 hơi khoai)
(1) a hoặc b <0 nghĩa là \(\left[\begin{matrix}a>0\\b< 0\end{matrix}\right.\)
(*)\(\Leftrightarrow\left(\frac{1-2^b}{2^b}\right)\left(2^a-1\right)=1\) có 2^a -1 luôn là số lẻ => không thể chia hết cho 2^b=> VT không nguyên => (*) vô nghiệm nguyên
(2) a và b <0 nghĩa là \(\left\{\begin{matrix}a< 0\\b< 0\end{matrix}\right.\) =>\(\left\{\begin{matrix}0< 2^a< 1\\0< 2^b< 1\end{matrix}\right.\Rightarrow\left(2^a-1\right)\left(2^b-1\right)< 1\) => vô nghiệm
Kết luận nghiệm duy nhất a=b=1