Đơn giản biểu thức
A= 2cosx + 3cos( π - x) - sin ( \(\dfrac{7\Pi}{2}\) - x ) + tan ( \(\dfrac{3\Pi}{2}\)- x )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X=5cosx-2*cos(x+pi)+tan(3/2pi-x)+7*sin(pi/2-x)
=5cosx+7cosx+2cosx-cot(pi/2-x)
=14cosx-tanx
1.
\(\Leftrightarrow2sinx.cosx+2cosx=0\)
\(\Leftrightarrow2cosx\left(sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow cosx=0\) (do \(cosx=0\Leftrightarrow sinx=\pm1\) bao hàm luôn cả pt \(sinx=-1\))
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
2.
\(\Leftrightarrow\left[{}\begin{matrix}2x-10^0=60^0+k360^0\\2x-10^0=120^0+n360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=35^0+k180^0\\x=65^0+n180^0\end{matrix}\right.\)
Do \(-120^0< x< 90^0\Rightarrow\left\{{}\begin{matrix}-120^0< 35^0+k180^0< 90^0\\-120^0< 65^0+n180^0< 90^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=0\\n=\left\{-1;0\right\}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=35^0\\x=-115^0\\x=65^0\end{matrix}\right.\)
3. Làm tương tự câu 2
4.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos\left(10x+\dfrac{4\pi}{5}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2}cos\left(\dfrac{x}{2}-2\pi\right)\right)=0\)
\(\Leftrightarrow cos\left(10x+\dfrac{4\pi}{5}\right)+cos\left(\dfrac{x}{2}-2\pi\right)=0\)
\(\Leftrightarrow cos\left(10x+\dfrac{4\pi}{5}\right)+cos\left(\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow cos\left(10x+\dfrac{4\pi}{5}\right)=-cos\left(\dfrac{x}{2}\right)=cos\left(\pi-\dfrac{x}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}10x+\dfrac{4\pi}{5}=\pi-\dfrac{x}{2}+k2\pi\\10x+\dfrac{4\pi}{5}=\dfrac{x}{2}-\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu 2:
\(A=2\cdot\dfrac{1}{2}+3\cdot\dfrac{1}{2}+1=1+1+1=3\)
Bài 3:
\(cos^2a=1-\left(\dfrac{12}{13}\right)^2=\dfrac{25}{169}\)
mà cosa>0
nên cosa=5/13
=>tan a=12/5; cot a=5/12
Câu 4: \(sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)
mà sina <0
nên sin a=-căn 3/2
=>tan a=-căn 3
\(A=-\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\cdot\left(-\sqrt{3}\right)=-\sqrt{3}\)
G = \(cos\left(a+\pi-6\text{}\text{}\pi\right)+sin\left(-2\pi+\dfrac{\pi}{2}+a\right)-tan\left(\dfrac{\pi}{2}+a\right)\cdot cot\left(\pi+\dfrac{\pi}{2}-a\right)\)
= \(cos\left(a+\pi\right)+sin\left(\dfrac{\pi}{2}+a\right)-tan\left(\dfrac{\pi}{2}+a\right)\cdot cot\left(\dfrac{\pi}{2}-a\right)\)
= \(-cosa+cosa-\left(-cota\cdot tana\right)=1\)
Lời giải:
Theo công thức lượng giác:
\(F=\sin (\pi +a)-\cos (\frac{\pi}{2}-a)+\cot (2\pi -a)+\tan (\frac{3\pi}{2}-a)\)
\(=-\sin a-\sin a+\cot (\pi -a)+\tan (\frac{\pi}{2}-a)\)
\(=-2\sin a-\cot a+\cot a=-2\sin a\)
\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)
\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)
\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)
A = 2cosx + 3cos(π - x) - sin\(\left(2\pi-\dfrac{\pi}{2}-x\right)+tan\left(4\pi-\dfrac{\pi}{2}-x\right)\)
A = 2cosx - 3cosx + sin\(\left(\dfrac{\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right)\)
A = -cosx + cosx + cotx
A = cotx