K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

ta có \(\frac{1+2+3+...+2013.a}{a}\)< \(\frac{1+2+3+...+2013.b}{b}\)nên ta có

(1+2+3+...+2013.a ) : a < (1+2+3+...+2013.b) :b

vì 2013 x a chia hết cho aneen loại và 2013.b chia hết cho b nên loại . Vậy

(1+2+3+.... ) :a <(1+2+3+...):b

mà 1+2+3+... = 1+2+3+...

nên chắc chắn rằng 1+2+3+... :a vì a lớn hơn b nên 1+2+3 +...:a <1+2+3+... :

Vậy a >b

5 tháng 3 2016

\(\frac{1+2+3+...+2013a}{a}=\frac{1+2+3+...+2013a-1}{a}+\frac{2013a}{a}=\frac{1+2+3+...+2013a-1}{a}+2013\)

\(\frac{1+2+3+...+2013b}{b}=\frac{1+2+3+...+2013b-1}{b}+\frac{2013b}{b}=\frac{1+2+3+...+2013b-1}{b}+2013\)

suy ra \(\frac{1+2+3+...+2013a-1}{a}<\frac{1+2+3+...+2013b-1}{b}\)

\(\Rightarrow\frac{2013a-1}{a}<\frac{2013b-1}{b}\Rightarrow\frac{a\left(2013-\frac{1}{a}\right)}{a}<\frac{b\left(2013-\frac{1}{b}\right)}{b}\)

\(\Rightarrow2013-\frac{1}{a}<2013-\frac{1}{b}\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow b>a\)

5 tháng 3 2016

nhầm , b<a

30 tháng 10 2019

                                                       Bài giải

a, \(\left| |3x-\frac{7}{3} | -2\right|=7\)

\(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|-2=-7\\|3x-\frac{7}{3}|-2=7\end{cases}}\)                 \(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|=-5\text{ ( loại) }\\|3x-\frac{7}{3}|=9\end{cases}}\)         \(\Rightarrow\text{ }\left|3x-\frac{7}{3}\right|=9\)        \(\Rightarrow\orbr{\begin{cases}3x-\frac{7}{3}=-9\\3x-\frac{7}{3}=9\end{cases}}\)                             \(\Rightarrow\orbr{\begin{cases}3x=\frac{-20}{3}\\3x=\frac{34}{3}\end{cases}}\)                             \(\Rightarrow\orbr{\begin{cases}x=-\frac{20}{9}\\x=\frac{34}{9}\end{cases}}\)

                 \(\Rightarrow\text{ }x\in\left\{-\frac{20}{9}\text{ ; }\frac{34}{9}\right\}\)

3 tháng 9 2016

Ta có : \(\frac{a}{a+\sqrt{2013a+bc}}=\frac{a}{a+\sqrt{a^2+ab+ac+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Theo bất đẳng thức Bunhiacopxki : \(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)

\(\Rightarrow\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

hay \(\frac{a}{a+\sqrt{2013a+bc}}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự : \(\frac{b}{b+\sqrt{2013b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\frac{c}{c+\sqrt{2013c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Cộng các bất đẳng thức trên theo vế được \(\frac{a}{a+\sqrt{2013a+bc}}+\frac{b}{b+\sqrt{2013b+ac}}+\frac{c}{c+\sqrt{2013c+ab}}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\\a+b+c=2013\\a,b,c>0\end{cases}}\) \(\Leftrightarrow a=b=c=671\)

25 tháng 10 2020

Vì a ; b ; c ; d  > 0

=> a + b +  c + d > 0

=> 2(a + b + c + d) > 0

=> 2a + 2b + 2c + 2d > 0

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

=> \(\frac{a}{2b}=\frac{1}{2}\Rightarrow2a=2b\Rightarrow a=b\)

Tương tự,ta được a = b = c = d

Khi đó A = \(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)

\(\frac{2013a-2012a}{2a}+\frac{2013b-2012b}{2b}+\frac{2013c-2012c}{2c}+\frac{2013d-2012d}{2d}\)(Vì a = b = c = d)

\(\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

25 tháng 10 2020

\(a,b,c,d>0\text{ nên : }a+b+c+d>0\Rightarrow\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

do đó: a=b=c=d hay A=1/2+1/2+1/2+1/2=2

16 tháng 11 2017

Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)

        \(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)

=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)

16 tháng 11 2017

k cho mk nha

2 tháng 4 2017

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2016}{2^{2015}}\)

\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{2016}{2^{2016}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{1}{2^{2016}}< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)(1)

Ta có

\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2014}}-\frac{1}{2^{2015}}\right)=1+\left(1-\frac{1}{2^{2015}}\right)\)

\(< 1+1=2\)(2)

Từ (1) và (2) ta có A<2

Vậy A<B

2 tháng 4 2017

A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.........+\frac{2016}{2^{2016}}\\ 2A=1+\frac{2}{2}+\frac{3}{2^2}+........+\frac{2016}{2^{2015}}\\ 2A-A=\left(\frac{2}{2}-\frac{1}{2}\right)+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+.........\left(\frac{2016}{2^{2015}}-\frac{2015}{2^{2015}}\right)+\left(1-\frac{2016}{2^{2015}}\right)\\ A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}+\left(1-\frac{2016}{2^{2015}}\right)\)

\(GọiC=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}\\ 2C=1+\frac{1}{2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\\ 2C-C=C=1-\frac{1}{2^{2015}}\)

Thay C vào A , ta có : A = 1 - 1/2^2015 + 1 - 1/2^2016  =2 - 1/2^2015 - 1/2^2016<2  =B->A<B