cho một tam giác có đường cao ha;hb;hc tỉ lệ thuận với ba số 4;5;6. Chu vi của tam giác đó là 37 cm. Độ dài cạnh nhỏ nhất của tam giác đó là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
AH=DH
Do đó: ΔABH=ΔDBH
Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
A B C H E 1 2 4 3
TA CÓ HAI ĐỌC THẲNG AE VÀ BC CẮT NHAU TẠI H VÀ CÓ MỘT GÓC BẰNG 90
\(\Rightarrow\widehat{H_1}=\widehat{H_2}=\widehat{H_3}=\widehat{H_4}=90\)
XÉT \(\Delta BAH\)VÀ\(\Delta BEH\)CÓ
BH LÀ CẠNH CHUNG
\(\widehat{H_1}=\widehat{H_2}\left(CMT\right)\)
\(AH=EH\left(GT\right)\)
\(\Rightarrow\Delta BAH=\Delta BEH\left(C-G-C\right)\)
\(\Rightarrow AB=BE\)
VẬY \(\Delta BAE\)CÂN TẠI B(ĐPCM)
XÉT \(\Delta ACH\)VÀ\(\Delta ECH\)CÓ
CH LÀ CẠNH CHUNG
\(\widehat{H_1}=\widehat{H_3}\left(CMT\right)\)
\(AH=EH\left(GT\right)\)
\(\Rightarrow\Delta ACH=\Delta ECH\left(C-G-C\right)\)
\(\Rightarrow AC=EC\)
VẬY \(\Delta CAE\)CÂN TẠI C (ĐPCM)
Chọn A.
Áp dụng định lí cosin trong tam giác ta có:
a2 = b2 + c2 = 2bc.cosA = 72 + 52 - 2.7.5.3/5 = 32
Nên
Mặt khác: sin2A + cos2A = 1 nên sin2A = 1 - cos2A = 16/25
Mà sinA > 0 nên sinA = 4/5
Mà:
2S(ABC)=ha.a=hb.b=hc.c suy ra 1/ha+1/hb+1/hc=a/2S+b/2S+c/2S=1/2S .(a+b+c)=1/r(a+b+c) .(a+b+c) =1/r (đpcm) (vì 2S=r(a+b+c))
Gọi độ dai 3 cạnh là a, b, c.
Theo đề bài, ta có:
a\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
gọi ba cạnh của tam giác làa;b;ccm(a;b;c>0)
thèo bài ra có chu vi tam giác là 37cm
=>a+b+c=37(1)
:ba đường cao tỉ lệ với 4;5;6
=>ha/4=hb/5=hc/6
đặt ha/4=hb/5=hc/6=k
=>ha=4k
hb=5k
hc=6k
có diện tích tam giác =ha.a=hb.b=hc.c
thay k vào ct:4k.a=5k.b=6k.c
<=>4a=5b=6c
<=>4a/60=5b/60=6c/60
<=>a/15=b/12=c/10(2)
từ 1,2
áp dụng t/c DTSBN
a/15=b/12=c/10=a+b+c/15+12+10=37/37=1
suy ra:a=15;b=12;c=10(tmđk)
vậy độ dài cạnh nhỏ nhất là 10cm