Tìm x biết:
(8x2+3)(8x2-3)-(8x2-1)2=54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
`B = x^15 - 7x^14 - x^14 + 7x^13 + x^13 - .... +7x + x - 7 + 2`
`<=> x^14(x-7) - x^13(x-7) + ... + x - 7 + 2`
`<=> (x^14-x^13 + ... + 1)(x-7) + 2`
Thay `x = 7 <=> (x^14 - x^13 + ... + 1) xx 0 + 2 = 2`.
\(\left(x-2\right)^3+\left(x+2\right)^3-x^3-8x^2+10\)
\(=x^3-6x^2+12x-8+x^3+6x^2+12x+8-x^3-8x^2+10\)
\(=x^3-2x^2+24x+10\)
ta có: 8=7+1=x+1
\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(\Rightarrow B=x-5\)
\(\Rightarrow B=7-5\)
\(\Rightarrow B=2\)
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
Tham khảo cách này nhoá~
Lời giải:
a. PT $\Leftrightarrow (3-2x-3-2x)(3-2x+3+2x)=8$
$\Leftrightarrow -4x.6=8$
$\Leftrightarrow -24x=8\Leftrightarrow x=\frac{-1}{3}$
b.
$9x^5-72x^2=0$
$\Leftrightarrow 9x^2(x^3-8)=0$
$\Leftrightarrow x^2=0$ hoặc $x^3=8$
$\Leftrightarrow x=0$ hoặc $x=2$
c.
$5x^4-8x^2-4=0$
$\Leftrightarrow 5x^4-10x^2+2x^2-4=0$
$\Leftrightarrow 5x^2(x^2-2)+2(x^2-2)=0$
$\Leftrightarrow (5x^2+2)(x^2-2)=0$
$\Leftrightarrow 5x^2+2=0$ (loại) hoặc $x^2-2=0$ (chọn)
$\Leftrightarrow x=\pm \sqrt{2}$
d.
PT $\Leftrightarrow [x^2(x+1)-4(x+1)]:(x-2)=0$
$\Leftrightarrow (x^2-4)(x+1):(x-2)=0$
$\Leftrightarrow (x-2)(x+2)(x+1):(x-2)=0$
$\Leftrightarrow (x+2)(x+1)=0$
$\Leftrightarrow x+2=0$ hoặc $x+1=0$
$\Leftrightarrow x=-2$ hoặc $x=-1$
a: Ta có: \(\left(3-2x\right)^2-\left(3+2x\right)^2=8\)
\(\Leftrightarrow9-12x+4x^2-9-12x-4x^2=8\)
\(\Leftrightarrow-24x=8\)
hay \(x=-\dfrac{1}{3}\)
b: Ta có: \(9x^5-72x^2=0\)
\(\Leftrightarrow9x^2\left(x^3-8\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) (x - 1) - (2x - 1) = 9 - x
<=> x - 1 - 2x + 1 = 9 - x
<=> x - 2x + x = 9 + 1 - 1
<=> 0x = 9 (vô lý vì 0x = 0 với mọi x)
Vậy PT vô nghiệm
b) 3 - 4x. (25 - 2x) = 8x2
<=> 3 - 100x + 8x2 = 8x2
<=> 3 - 100x = 0
<=> -100x = -3
<=> 100x = 3
\(\Leftrightarrow x=\dfrac{3}{100}\)
Vậy: \(S=\left\{\dfrac{3}{100}\right\}\)
a) (x-1) - (2x-1) = 9-x
<=> x - 1 - 2x + 1= 9-x
<=> -x = 9-x
<=> -x + x = 9
<=> 0 = 9 ( sai )
Vậy tập nghiệm S ={\(\varnothing\)}
b) 3 - 4x(25 - 2x) = 8x2
<=> 3 - 100x + 8x2 = 8x2
<=> 3 = 100x
<=> \(\dfrac{3}{100}\)= x = 0,03
Vập tập nghiệm S ={0,03}
Đặt 8x^2-1=t
\(\Leftrightarrow\left(t+3\right)\left(t-3\right)-\left(t^2-1\right)^2=54\Leftrightarrow t^2-9-\left(t^2-1\right)^2=54\)
Đặt tiếp t^2-1=y
\(y-8-y^2=54\Leftrightarrow y^2-y+62=0\) vô nghiệm