K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Lời giải

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} x^3-1=y^3+8\\ 3x-3x^2=6y^2+12y\end{matrix}\right.\Rightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow (x-1)^3=(y+2)^3\Leftrightarrow (x-1-y-2)(x^2+y^2+xy+3y+3)=0\)

\(\Rightarrow \)\(\left[\begin{matrix}x=y+3\\x^2+y^2+xy+3y+3=0\end{matrix}\right.\)

Nếu \(x=y+3\) thay vào bất kỳ một trong hai phương trình ban đầu thu được

\(\left[\begin{matrix}y=-1\\y=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Nếu \(x^2+y^2+xy+3y+3=0\)

\(\Leftrightarrow (x+\frac{y}{2})^2+3(\frac{y}{2}+1)^2=0\) \(\Rightarrow\left\{\begin{matrix}x+\frac{y}{2}=0\\\frac{y}{2}+1=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}y=-2\\x=1\end{matrix}\right.\)

Vậy HPT có nghiệm \((x,y)=(2,-1),(1,-2)\)

NV
23 tháng 5 2019

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)

\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

Thay vào pt dưới:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)

NV
23 tháng 5 2019

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)

\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)

TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:

\(\left(-2y-1\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)

TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:

\(\left(-2y-2\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)

NV
29 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

NV
29 tháng 7 2021

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

23 tháng 2 2022

nhanh đy mằ =(

23 tháng 2 2022

chc têu độn thổ=(

17 tháng 5 2017

a/ \(\left\{{}\begin{matrix}x+2y=4\\x^2+4y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(4-2y\right)^2+4y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\4y^2-12y+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(y-1\right)\left(y-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left[{}\begin{matrix}y-1=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(2;1\right)\) hoặc \(\left(x;y\right)=\left(0;2\right)\)