Tìm x, biết
a) \(\frac{x}{4}\)= \(\frac{21}{28}\)
b) \(\frac{2x}{5}\)= \(\frac{-24}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x}{5}=-\frac{24}{10}\)
=> \(\frac{2x}{5}=-\frac{12}{5}\)
=> 2x = -12
=> x = -12 : 2
=> x = -6
\(\frac{x}{4}=\frac{21}{28}\)
=> \(\frac{x}{4}=\frac{3}{4}\)
=> x = 3
\(\frac{-24}{10}.\frac{x}{4}=\frac{-6}{10}.x=\frac{-3}{5}.x=\frac{21}{28}=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}:\frac{-3}{5}=\frac{-5}{4}\)
a) \(\frac{x}{4}=\frac{21}{28}\Rightarrow\frac{x}{4}=\frac{3}{4}\Rightarrow x=3\)
Vậy x = 3
b) \(\frac{2x}{5}=\frac{-24}{10}\Rightarrow\frac{2x}{5}=\frac{-12}{5}\Rightarrow2x=-12\Rightarrow x=-6\)
Vậy x = -6
\(a)\frac{x}{4}=\frac{21}{28}\)
\(\Rightarrow x\cdot28=4\cdot21\)
\(\Rightarrow x\cdot28=84\)
\(\Rightarrow x=3\)
\(b)\frac{2x}{5}=\frac{-24}{10}\)
Rút gọn : \(\frac{2x}{5}=\frac{-12}{5}\)
\(\Rightarrow2x=-12\)
\(\Rightarrow x=(-12)\div2=-6\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy ...
b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a)\(\frac{x}{4}=\frac{21}{28}\)
x . 28 = 4.21
x.28 = 84
x = 84:28
x = 3
Vậy x = 3
b)\(\frac{2x}{5}=\frac{-24}{10}\)
2x.10=5.(-24)
2x.10= -120
2x = -120 :10
2x= -12
x= -12 : 2
x= -6
Vậy x = -6
a,\(\frac{x}{4}\)=\(\frac{21}{28}\)
\(\Leftrightarrow\)28x=21.4
\(\Leftrightarrow\)28x=84
\(\Leftrightarrow\)x=3
Vậy x=3
b, \(\frac{2x}{5}\)=\(\frac{-24}{10}\)
\(\Leftrightarrow\)2x.10=-24.5
\(\Leftrightarrow\)20x=-120
\(\Leftrightarrow\)x=-6
Vậy x=-6
Chúc bn hk tốt