K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

Bài 1:

a) Chỗ y6 là 6.y hay là y6

b) \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)

\(\Rightarrow2x-2-6x-6-8x-12=16\)

\(\Rightarrow\left(2x-6x-8x\right)-\left(2+6+12\right)=16\)

\(\Rightarrow-12x-20=16\)

\(\Rightarrow-12x=36\)

\(\Rightarrow x=-3\)

Vậy x = -3

c) \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)

\(\Rightarrow\left(x-5\right)^{x+1}\left[1-\left(x-5\right)^{12}\right]=0\)

\(\Rightarrow\left(x-5\right)^{x+1}=0\) hoặc \(1-\left(x-5\right)^{12}=0\)

+) \(\left(x-5\right)^{x+1}=0\Rightarrow x-5=0\Rightarrow x=5\)

+) \(1-\left(x-5\right)^{12}=0\Rightarrow\left(x-5\right)^{12}=1\)

\(\Rightarrow x-5=\pm1\)

+) \(x-5=1\Rightarrow x=6\)

+) \(x-5=-1\Rightarrow x=4\)

Vậy \(x\in\left\{6;4\right\}\)

Bài 2: a, thiếu dữ liệu

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\left[\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

Ta có: \(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3a^2a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)

Vậy \(\frac{a^3b^2c^{1930}}{a^{1935}}=1\)

25 tháng 1 2017

sửa câu a bài 1 là y6 là bỏ 6 đi

NM
1 tháng 12 2021

a. \(k=\frac{y}{x}=2\)

b.

x1-2
y2-4

c.

y3-4
x3/2 -2
10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

22 tháng 5 2021

cảm ơn mọi người nhìu nha!!!

8 tháng 5 2018

b/

Ta có \(\left(x-3\right)\left(x+\frac{1}{2}\right)>0\)

=> \(\orbr{\begin{cases}x-3>0\\x+\frac{1}{2}>0\end{cases}}\)=> \(\orbr{\begin{cases}x>3\\x>\frac{-1}{2}\end{cases}}\)