cho tam giác abc có bc=12cm,góc b bằng 60,góc c =40kẻ đường cao ah.tính ah,ab,ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét \(\Delta AHB\) vuông tại H
\(=>\sin40^o=\dfrac{AH}{AB}=>AH=12.\sin40^o=7,7cm\)
xét \(\Delta AHC\) vuông tại H
\(=>\tan30^o\)\(=\dfrac{AH}{HC}=>HC=\dfrac{AH}{\tan30^o}=\dfrac{77\sqrt{3}}{10}cm\)
pytago \(=>BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-7,7}=11,7cm\)
\(=>BC=HC+BH=25cm\)
a)Xét tam giác ABC có A=90
\(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)
Mà AD là tia phân giác BAC nên\(\frac{AB}{BD}=\frac{AC}{CD}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
\(\frac{AB}{BD}=\frac{AC}{CD}=\frac{AB+AC}{BD+CD}=\frac{7}{5}\)
\(\Rightarrow BD=\frac{60}{7}\left(cm\right),\\CD=\frac{80}{7}\left(cm\right)\)
b) Dễ c.m được \(\Delta ABH\)đồng dạng với \(\Delta CBA\)
\(\Leftrightarrow\frac{AB}{CB}=\frac{BH}{BA}=\frac{AH}{CA}\Leftrightarrow\frac{12}{20}=\frac{BH}{12}=\frac{AH}{16}\)
\(\Rightarrow BH=\frac{36}{5}\left(cm\right),\\ AH=\frac{48}{5}\left(cm\right)\\ \Rightarrow CH=\frac{64}{5}\left(cm\right)\)
Mà CD=80/7 nên HD=48/35(cm)
Xét AHD vuông tại H
nên\(AD=\sqrt{\frac{48}{35}^2+\frac{48}{5}^2}=\frac{48\sqrt{2}}{7}\left(cm\right)\)
Nếu có sai mong bạn thông cảm nha
A B C H 12cm 60 o 18cm
\(\Delta ABH\)vuông ,ta có:
\(\tan B=\frac{AH}{BH}\Rightarrow AH=BH.\tan B=12.\tan60^o\approx16,517cm\)
\(\cos B=\frac{BH}{AB}\Rightarrow AB=\frac{BH}{\cos B}=\frac{12}{\cos12^o}\approx12,216cm\)
\(\tan C=\frac{AH}{HC}=\frac{16,517}{18}\approx0,918\Rightarrow C\approx26^o\)
\(\cos C=\frac{HC}{AC}\Rightarrow AC=\frac{HC}{\cos C}=\frac{18}{\cos26^o}\approx19,613cm\)
Vậy \(AH\approx16,517cm\)
\(AB=12,216cm\)
\(AC=19,613cm\)
a) Xét tam giác ABC có:
\(\left\{{}\begin{matrix}AB^2+AC^2=9^2+12^2=225\\BC^2=15^2=225\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\\sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}\approx37^0\\\widehat{B}\approx53^0\end{matrix}\right.\)
c) Áp dụng HTL:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABC vuông tại A có Ah đường cao
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)
\(\Rightarrow HC=BC-BH=15-5,4=9,6\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\left(13^2=12^2+5^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot13=5\cdot12=60\)
hay \(AH=\dfrac{60}{13}\left(cm\right)\)
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB