Tìm 2 số tự nhiên x,y biết :
\(2x+3=y\left(1-x\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)
Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0
=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5
=> VT \(⋮\)5
Mà 11879 không chia hết cho 5
=> không tồn tại x,y thỏa mãn
Ta có
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)
Với y = 0 thì
\(2^{2x}+5\times2^x+5=109\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow x=3\)
Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó
Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)
Lấy PT dưới trừ PT trên ta được: \(2x+y-x-y=-5-5\Leftrightarrow x=-10\left(ktm\right)\)
Vậy hệ vô nghiệm với \(x,y\in N\)
Đặt A=(2^x+1)(2^x+2)(2^x+3)(2^x+4), ta có 2^x.A là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5. Nhưng 2^x không chia hết cho 5, do đó A chia hết cho 5.
Nếu y>=1 ta có (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y chia hết cho 5 mà 11879 không chia hết cho 5 nên y>=1 không thỏa mãn
=>y=0
Khi đó ta có (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y=11879
<=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)-1=11879
<=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=11880
<=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=9.10.11.12
=>x=3
Vậy x=3 và y=0
\(\Rightarrow\left(x+5\right)\left(y-3\right)=1\cdot15=3\cdot5\)
Ta có
x+5 | 1 | 15 | 3 | 5 |
y-3 | 15 | 1 | 5 | 3 |
x | -4(ktm) | 10 | -2(ktm) | 0 |
y | 18 | 4 | 8 | 6 |
Vậy \(\left(x;y\right)=\left\{\left(10;4\right);\left(0;6\right)\right\}\)
2x+3=y(1-x)
=>2x-2+5-y(1-x)=0
=>-2.(1-x)-y.(1-x)=-5
=>(-2-y)(1-x)=-5
tự giải típ