K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

2x+3=y(1-x)

=>2x-2+5-y(1-x)=0

=>-2.(1-x)-y.(1-x)=-5

=>(-2-y)(1-x)=-5

tự giải típ

25 tháng 2 2017

do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)

Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0

=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5

=> VT \(⋮\)5

Mà 11879 không chia hết cho 5

=> không tồn tại x,y thỏa mãn

18 tháng 10 2016

Ta có

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)

\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)

\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)

Với y = 0 thì

\(2^{2x}+5\times2^x+5=109\)

\(\Leftrightarrow2^x=8\)

\(\Leftrightarrow x=3\)

Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó

Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)

23 tháng 12 2021

Lấy PT dưới trừ PT trên ta được: \(2x+y-x-y=-5-5\Leftrightarrow x=-10\left(ktm\right)\)

Vậy hệ vô nghiệm với \(x,y\in N\)

 

27 tháng 1 2016

Đặt A=(2^x+1)(2^x+2)(2^x+3)(2^x+4), ta có 2^x.A là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5. Nhưng 2^x không chia hết cho 5, do đó A chia hết cho 5.

Nếu y>=1 ta có (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y chia hết cho 5 mà 11879 không chia hết cho 5 nên y>=1 không thỏa mãn

=>y=0

Khi đó ta có  (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y=11879

             <=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)-1=11879

             <=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=11880

             <=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=9.10.11.12

               =>x=3   

Vậy x=3 và y=0

22 tháng 10 2021

\(\Rightarrow\left(x+5\right)\left(y-3\right)=1\cdot15=3\cdot5\)

Ta có 

x+511535
y-315153
x-4(ktm)10-2(ktm)0
y18486

Vậy \(\left(x;y\right)=\left\{\left(10;4\right);\left(0;6\right)\right\}\)

 

22 tháng 10 2021

Em vẫn ko hiểu ak

12 tháng 10 2023

loading...  loading...