Tìm x,y biết:
7(x-2004)2 =23-y2
GIUP MIK VS MAI MIK THI RỒI!HUHUHU!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$
Có: \(\left(x-2\right)^{2018}+\left|y^2-9\right|^{2017}=0\)
Suy ra: \(\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-2=0\\\left|y^2-9=0\right|\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)
chưa chắc đã đúng đâu Nguyệt Phượng nhé
trường hợp của bạn chỉ dùng khi biểu thức trên là:(x-2)^2018* |y^2-9|^ 2017=0 thôi bạn nhé
\(7\left(x-2017\right)^2+y^2=23\Rightarrow7\left(x-2017\right)^2\le23\Leftrightarrow\left(x-2017\right)^2\le\frac{23}{7}\)
mà \(x\inℕ\Rightarrow\orbr{\begin{cases}x-2017=0\\x-2017=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2018\end{cases}}\)
Với \(x=2017\)thì \(y^2=23\)không có nghiệm tự nhiên.
Với \(x=2018\)thì \(7+y^2=23\Leftrightarrow y^2=16\Leftrightarrow y=4\)(vì \(y\inℕ\))
Vậy ta có nghiệm \(\left(x,y\right)=\left(2018,4\right)\).
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
c) \(\left(x+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2}{x}+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2+y}{x}\right)^3\)
\(=\dfrac{x^6+3x^4y+3x^2y^3+y^3}{x^3}\)
f) \(\left(x-\dfrac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3\)
\(=x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}\)
h) \(\left(x+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x}{2}+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x+y^2}{2}\right)^3\)
\(=\dfrac{8x^3+12x^2y^2+6xy^4+y^6}{8}\)
k) \(\left(x-\dfrac{1}{3}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=x^3-x^2+\dfrac{x}{3}-\dfrac{1}{27}\)
m) \(\left(x+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x}{3}+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x+y^2}{3}\right)^3\)
\(=\dfrac{27x^3+27x^2y^2+9xy^4+y^6}{27}\)
Q) \(2\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)
\(=2\left(2x^4-x^2y+x^2y-\dfrac{1}{2}y^2\right)\)
\(=2\left(2x^4-\dfrac{1}{2}y^2\right)\)
\(=4x^4-y^2\)
ta có \(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)
\(\Leftrightarrow x^2+4x+4-2\left(x^2+5x+6\right)+x^2+10x+25=7\)
\(\Leftrightarrow4x+10=0\Leftrightarrow x=-\frac{5}{2}\)
Bạn áp dụng hằng đẳng thức số 1, nhân phá ngoặc là Ok nhé
\(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)
\(\Leftrightarrow x^2+4x+4-2\left(x^2+3x+2x+6\right)+x^2+10x+25-7=0\)
\(\Leftrightarrow2x^2+14x+22-2x^2-6x-4x-12=0\)
\(\Leftrightarrow4x+10=0\)
\(\Leftrightarrow4x=-10\)
\(\Leftrightarrow x=\frac{-5}{2}\)
\(7\left(x-2004\right)^2=23-y^2\)
\(\Rightarrow7\left(x-2004\right)^2+y^2=23\left(1\right)\)
Vì \(y^2\ge0\) nên \(\left(x-2004\right)^2\le\frac{23}{7}\) suy ra \(\left[\begin{matrix}\left(x-2004\right)^2=0\\\left(x-2004\right)^2=1\end{matrix}\right.\)
*)Xét \(\left(x-2004\right)^2=0\) thay vào \((1)\) ta có: \(y^2=23\) (loại)
*)Xét \((x-2004)^2=1\) thay vào \((1)\) ta có \(y^2=16\)
Từ đó ta tìm được \(\left[\begin{matrix}\left\{\begin{matrix}x=2005\\y=4\end{matrix}\right.\\\left\{\begin{matrix}x=2003\\y=4\end{matrix}\right.\end{matrix}\right.\)
cảm ơn bạn nhiều lắm!