70*(\(\frac{121212}{565656}\)+\(\frac{121212}{727272}\)+\(\frac{121212}{909090}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(70\left(\frac{121212}{565656}+\frac{121212}{727272}+\frac{121212}{909090}\right)\)
=\(70\left(\frac{3.40404}{14.40404}+\frac{121212}{6.121212}+\frac{2.60606}{15.60606}\right)\)
=\(70\left(\frac{3}{14}+\frac{1}{6}+\frac{2}{15}\right)\)
=\(70.\frac{18}{35}=38\)
Đặt
\(A=210.\left(\frac{111111}{121212}+\frac{111111}{202020}+\frac{111111}{303030}+\frac{111111}{424242}+\frac{111111}{565656}+\frac{111111}{727272}+\frac{111111}{909090}\right)\)
\(=210.\left(\frac{11}{12}+\frac{11}{20}+\frac{11}{30}+\frac{11}{42}+\frac{11}{56}+\frac{11}{72}+\frac{11}{90}\right)\)
\(=210.11\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=2310.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=2310.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2310.\left(\frac{1}{3}-\frac{1}{10}\right)\)
\(=2310.\frac{7}{30}\)
\(=539\)
210.(111111/121212 +111111/202020+11111/303030 + 111111/424242 +111111/565656 +111111/727272 +111111/909090)
= 210 . ( 11/12+11/20+11/42+11/56+11/72+11/90)
= 210.(11.(1/12+1/20+1/42+1/56+1/72+1/90))
=210.(11(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10))
=210.(11.(1/3-1/10))
=210.(11.7/30)
=210.77/30
=593
T I C K GIÙM MIK
\(70.\left(\frac{252525}{565656}+\frac{252525}{727272}+\frac{252525}{909090}\right)\)
\(=70.\left(\frac{25}{56}+\frac{25}{72}+\frac{25}{90}\right)\)
\(=70.25.\left(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=1750.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1750.\left(\frac{1}{7}-\frac{1}{10}\right)\)
\(=1750.\frac{3}{70}\)
\(=75\)
Tính :
\(=70.\left(\frac{25}{56}+\frac{25}{72}+\frac{25}{90}\right)\)
=\(70.\frac{15}{14}\)
=75
knha
\(B=70.\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)
\(B=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)
\(B=70.13.\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(B=910.\left(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(B=910.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=910.\left[\frac{1}{7}+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\right]\)
\(B=910.\left[\frac{1}{7}-\frac{1}{10}\right]\)
\(B=910.\frac{3}{70}=39\)
~ Hok tốt ~
\(B=70\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)
\(B=70\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)
\(B=70.13\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(B=70.13.\frac{3}{70}\)
\(B=39\)
\(B=70\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)
\(=70\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)\)
\(=70\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)
\(=70.13\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=910\left(\frac{45}{2520}+\frac{35}{2520}+\frac{28}{2520}\right)\)
\(=910.\frac{3}{70}\)
\(=39\)
Vậy \(B=39\)
Ta có \(70\left(\frac{121212}{565656}+\frac{121212}{727272}+\frac{121212}{909090}\right)\)
\(=70\left(\frac{3\cdot40404}{14\cdot40404}+\frac{121212}{121212\cdot6}+\frac{2\cdot60606}{15\cdot60606}\right)\)
\(=70\left(\frac{3}{14}+\frac{1}{6}+\frac{2}{15}\right)\)
\(=70\cdot\frac{18}{35}=36\)