cho a,b,c khác 0 thỏa mãn \(\frac{ab+ac}{2}\)=\(\frac{bc+ba}{3}\)=\(\frac{ca+cb}{4}\). Hỏi a,b,c tỉ lệ với các số nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quản lý ko duyệt vậy t copy bài của bạn Lê anh tú CTV nhé
áp dụng dãy tỉ số = nhau ta được
\(\Leftrightarrow\frac{\left(ab+ac\right)+\left(bc+ba\right)-\left(ca+cb\right)}{2+3-4}=\frac{\left(ab+ab\right)+\left(bc-bc\right)+\left(ac-ac\right)}{1}=\frac{2ab}{1}\)
tương tự
\(\frac{\left(ab+ac\right)+\left(ca+cb\right)-\left(bc+ba\right)}{2+4-3}=\frac{\left(ab-ab\right)+\left(ac+ac\right)+\left(cb-cb\right)}{3}=\frac{2ac}{3}\)
tương tự
\(\frac{\left(bc+ba\right)+\left(ca+cb\right)-\left(ab+ac\right)}{3+4-2}=\frac{\left(cb+cb\right)+\left(ba-ba\right)+\left(ca-ca\right)}{5}=\frac{2cb}{5}\)
từ 1,2,3 ta sy ra
\(\frac{2ab}{1}=\frac{2ac}{3}=\frac{2cb}{5}\)
\(\frac{2ba}{1}=\frac{2bc}{5}\) " vì 2b=2b" suy ra \(\frac{a}{1}=\frac{c}{5}\)" nhân 3 cho mẫu số của 2 vế ta được \(\frac{a}{3}=\frac{c}{15}\) " 1"
tương tự với \(\frac{2ca}{3}=\frac{2cb}{5}\) " vì 2c=2c suy ra \(\frac{a}{3}=\frac{b}{5}\) "2"
từ 1 và 2 suy ra \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Câu Hỏi Tương Tự của Trương Diệu Ngọc nha !
MERRY CHRISMAS !Đoàn Văn Nam
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath