K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

\(\Leftrightarrow\) x2 = \(\frac{m+4}{m^2+5m+4}\)

\(\Leftrightarrow\) x2 = \(\frac{m+4}{\left(m+1\right)\left(m+4\right)}\)

\(\Leftrightarrow\) x2 = \(\frac{1}{m+1}\) \(\Leftrightarrow\) x = \(\sqrt{\frac{1}{m+1}}\) hoặc x = -\(\sqrt{\frac{1}{m+1}}\)

15 tháng 1 2017

(m^2+5m+4)x^2=m+4

<=> (m^2+m +4m+4)x^2=m+4

<=>[(m^2+m)+(4m+4)].x^2=m+4

<=>[m.(m+1) +4.(m+1)].x^2=m+4

<=>x^2.(m+1)(m+4)=m+4 (1)

với m=-1 vào pt (1) ta đc ;

0x^2=4<=> pt vô nghiệm

vói m=-4 vào pt (1) ta đc :

0x^2=0

<=> pt có vô số nghiệm

với m#-4 và m#-1 thì pt có nghiệm duy nhất là

x=\(\frac{m-1}{m+4}\)

vậy với m=-1<=> pt vô nghiệm

với m=-4 <=> pt có vô số nghiệm

với m#-1 và m#-4 <=> pt có duy nhất 1 nghiệm là \(\frac{m-1}{m+4}\)

đúng thì tích nha

30 tháng 7 2021

undefined

undefined

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

NV
28 tháng 4 2021

\(\Leftrightarrow\sqrt{2x^2-2\left(m+4\right)x+5m+10}=x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\2x^2-2\left(m+4\right)x+5m+10=x^2-6x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x^2-2\left(m+1\right)x+5m+1=0\left(1\right)\end{matrix}\right.\)

Pt đã cho có nghiệm khi (1) có ít nhất 1 nghiệm thỏa mãn \(x\ge3\)

- Để (1) có nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(5m+1\right)\ge0\Leftrightarrow m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\) (1)

- Để 2 nghiệm của (1) thỏa mãn \(x_1\le x_2< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)>0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9>0\\x_1+x_2< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5m+1-6\left(m+1\right)+9>0\\2\left(m+1\right)< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m< 2\end{matrix}\right.\) \(\Rightarrow m< 2\)

\(\Rightarrow\) Để pt có ít nhất 1 nghiệm thỏa mãn \(x\ge3\) thì \(m\ge2\) (2)

Kết hợp (1); (2) \(\Rightarrow m\ge3\)

3 tháng 6 2021

 a, \(x^2-\left(2m+1\right)x+m^2+5m=0\)

Với m=2 

\(x^2-\left[2.\left(-2\right)+1\right]x+\left(-2\right)^2+5.\left(-2\right)=0\)

\(x^2+3x-6=0\)

\(\Delta=3^2-4.1.\left(-6\right)\)

     \(=9+24\)

\(=33>0\Rightarrow\sqrt{\Delta}=\sqrt{33}\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-3+\sqrt{33}}{2}\)

\(x_2=\dfrac{-3-\sqrt{33}}{2}\)

Vậy khi m=-2 thì phương trình có nghiệm là \(x_1=\dfrac{-3+\sqrt{33}}{2};x_2=\dfrac{-3-\sqrt{33}}{2}\)

b,Ta có \(\Delta=\left[-\left(2m+1\right)\right]^2-4\left(m^2+5m\right)\)

                 \(=4m^2+4m+1-4m^2-20m\)

                 \(=1-16m\)

Phương trình có 2 nghiệm\(\Leftrightarrow\Delta\ge0\)

                                          \(\Leftrightarrow1-16m\ge0\)

                                          \(\Leftrightarrow m\le\dfrac{1}{16}\)

Khi đó hệ thức viet ta có tích các nghiệm là\(m^2+5m\)

Mà tích các nghiệm bằng 6, do đó \(m^2+5m=6\)

                                                   \(\Leftrightarrow m^2+5m-6=0\)

Ta thấy \(a+b+c=1+5+\left(-6\right)=0\) nên \(m_1=1;m_2=-6\)

Đối chiếu với điều kiện \(m\le\dfrac{1}{16}\) thì \(m=-6\) là giá trị cần tìm

-Chúc bạn học tốt-

=>2x-2y=8 và 2x+3y=5m+3

=>-5y=8-5m-3=-5m+5 và x-y=4

=>y=m-1 và x=4+m-1=m+3

x^2+y^2-4=(m+3)^2+(m-1)^2-4

=m^2+6m+9+m^2-2m+1-4

=2m^2+4m+6

=2(m^2+2m+3)

=2(m^2+2m+1+2)

=2[(m+1)^2+2]>=4

=>A<=2019/4

Dấu = xảy ra khi m=-1

5 tháng 5 2017

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

5 tháng 5 2017

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

21 tháng 4 2021

Linh tinh đếyyy ạ. Có gì sai thông cảm nhaaaaundefined

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

6 tháng 4 2021

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

NV
29 tháng 3 2022

Pt vô nghiệm khi:

\(\Delta=\left(2m+1\right)^2-\left(5m^2+3m+16\right)< 0\)

\(\Leftrightarrow-m^2+m-15< 0\) (luôn đúng)

Vậy pt đã cho vô nghiệm với mọi m