K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

24 tháng 7 2017

\(A=-x^2-2x+5-y^2+4y\)

\(=-x^2-2x-1-y^2+4y-4+10\)

\(=-\left(x^2+2x+1\right)-\left(y^2-4y+4\right)+10\)

\(=-\left(x+1\right)^2-\left(y-2\right)^2+10\ge10\)

Xảy ra khi \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

\(B=-4x^2-y^2+20x+2y-30\)

\(=-4x^2+20x-25-y^2+2y-1-4\)

\(=-4\left(x^2-5x+\frac{25}{4}\right)-\left(y^2-2y+1\right)-4\)

\(=-4\left(x-\frac{5}{2}\right)^2-\left(y-1\right)^2-4\le-4\)

\(=-4\left(x-\frac{5}{2}\right)^2-\left(y-1\right)^2-4\le-4\)

Xảy ra khi \(x=\frac{5}{2};y=1\)

24 tháng 7 2017

mình nghĩ bạn chép sai đề bài rồi hay sao ấy, đề bài đúng của mình là gtln cơ .

A=-(x2+2x+1)-(y2-4y+4)+1+4+5

=-(x+1)2-(y-2)2+10

vì (x+1)2lớn hơn hoặc bằng 0 và (y-2)cũng lớn hơn hoặc bằng 0

=>-(x+1)2nhỏ hơn hoặc bằng 0 và -(y-2)2 cũng vậy=>-(x+1)2-(y-2)2 sẽ nhỏ hơn hoặc bằng 0=>-(x+1)2-(y-2)2+10 sẽ nhỏ hơn hoặc bằng 10. vậy gtln của A=10

dấu bằng xảy ra khi đồng thời x+1=0=>x=-1 và y-2=0=>y=2

B=-((2x)2+20x+25)-(y2-2y+1)+25+1-30

=-(2x+5)2-(y-1)2-4

bạn lập luận tương tự như ý a sẽ được -(2x+5)2-(y-1)2-4 sẽ nhỏ hơn hoặc bằng-4 dấu bằng xảy ra khi:2x+5=0=>x=-5/2 và y-1=0=>y=1

2 tháng 10 2015

GTNN LÀ :-43

GTLN LÀ:-43

25 tháng 4 2019

Ta có: \(A=4x^2+12x+9-1\)

   <=> \(A=\left(2x+3\right)^2-1\)

   <=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)

   <=> \(A=\left(2x+2\right)\left(2x+4\right)\)

   <=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)

   Vậy Amin = 8 khi x=0 

25 tháng 4 2019

trần gia bảo bái phục bái phục!

                    Lời giải

Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)

Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)

\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)

\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))

Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2

Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2

12 tháng 8 2016

A=5x^2+9y^2-4x-12xy+9 
= x^2 - 4x + 4 + 9y^2 - 12xy + 4x^2 + 5 
= (x-2)^2 + (3y - 2x)^2 +5 >= 5 
Dấu "=" xẩy ra khi x-2=0 và 3y-2x=0 
hay x = 2 và y = 4/3 
Vậy GTNN của A là 5 khi x = 2 và y = 4/3

5 tháng 11 2017

\(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\)

\(\left(2x+1\right)^2\ge0\forall x\Rightarrow\left(2x+1\right)^2+10\ge10\)

''='' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy Min_A = 10 khi x = -1/2