Giá trị của P=\(\frac{2x+5y}{x-2y}\)với x>y>0 và x2+3y2=4xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)
Có phải đề là : \(\left|2x-3\right|=5-x\) ( với 5 - x > 0 )
Vì 5 - x > 0
=> 5 > x
TH1 : x < \(\frac{3}{2}\)
=> | 2x - 3 | < 0
=> | 2x - 3 | = 3 - 2x = 5 - x
=> 3 - 2x = 5 - x
=> 2x - x = 3 - 5
=> x = - 2 ( thỏa mãn )
TH2 : x > \(\frac{3}{2}\)
=> | 2x - 3 | > 0
=> | 2x - 3 | = 2x - 3 = 5 - x
=> 2x + x = 5 + 3
=> 3x = 8
=> x = \(\frac{8}{3}\)( thỏa mãn )
Vậy \(x\in\left\{\frac{8}{3};-2\right\}\)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi ay = bx
\(p=\left(3x+\frac{12}{x}-12\right)+\left(y+\frac{16}{y}-8\right)+2\left(x+y\right)+20\)
\(p=\frac{3x^2-12x+12}{x}+\frac{y^2-8y+16}{y}+2\left(x+y\right)+20\)
\(p=\frac{3\left(x-2\right)^2}{x}+\frac{\left(y-4\right)^2}{y}+2\left(x+y\right)+20\)
\(p\ge2\cdot6+20=32\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-2\right)^2=0\\\left(y-4\right)^2=0\\x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy Min p = 32 \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
x/y+3.y/x=4
đặt b=y/x<1
1/b+3b=4
3b^2-4b+1=0
b=1loia
b=1/3
(2+5b)/(1-2.b)
\(P=\frac{2+5.\frac{1}{3}}{1-2.\frac{1}{3}}=\frac{\frac{11}{3}}{\frac{1}{3}}=11\)
a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)
\(=m^2-10m+25+4m-24\)
\(=m^2-6m+1=\left(m-3\right)^2-8\)
Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)
\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)
Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)
Ta có: \(x_1x_2=-m+6\)
\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)
\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)
\(\Leftrightarrow6m^2-136m+756=0\)
hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)
b: \(x_1+x_2+x_1x_2-11=0\)
\(\Leftrightarrow m-5-m+6-11=0\)
=>-12=0(vô lý)
\(x^2+3y^2=4xy\)
\(x^2+4y^2-y^2-4xy=0\)
\(\left(x-2y\right)^2-y^2=0\)
\(\left(x-3y\right)\left(x-y\right)=0\)
=> x=3y hoặc x=y
Mà ta có x>y>0 => Trường hợp x=y loại
x=3y(Nhận)
Thay x=3y vào biểu thức ta có:
P=\(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
x>y>0 thật hả bạn