Cho tam giác ABC cân tại B.Gọi BE la đường phân giác của góc ngoài tại đỉnh B
CMR BE //AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E B A C H
Vì BE là tia pg của góc ngoài tại đỉnh B=>góc ABE= góc EBH=>góc ABE=1/2 góc ABH(1)
Xét góc ngoài ABH của \(\Delta\)ABC tại đỉnh B ta có: góc ABH= góc BAC+ACB
mà \(\Delta\)ABC là tam giác cân tại B=> góc BAC=ACB
=>góc BAC=1/2 góc ABH(2)
Từ (1)và (2)=>góc ABE= góc BAC
Mà 2 góc này ở vị trí so le trong
=>BE//AC
B A C E 1 2 3
Ta có: B1 + B2 + B3 = 180' (giả thiết)
Mà B2 = B1 => B3 + 2B2 = 180'(1)
Tam giác ABC có: A + B3 + C = 180'
Mà A = C => B3 + 2C = 180'(2)
Từ (1) và (2) => 2B2 = 2C
=> B2 = C => BE song song AC (vì có một cặp góc ở vị trí so le trong bằng nhau)
E A H B C
Ta thấy vì BE là tia phân giác ngoài đỉnh B nên góc ABE=gEBH=>gABE=1/2gABH(1)
Xét góc ngoài ABH của tgABC lên đỉnh B ta lại có gABH=gBAC+ACB
Mà theo đề bài tg ABC cân tại B nên BAC=ACB
=>gBAC=1/2gABH(2)
Từ (1) và (2)=>gABE=gBAC
Mà 2 góc này có vị trí so le trong
Nên=> BE//AC
đpcm.
Gọi \(\widehat{DBA}\) là góc ngoài của của \(\Delta BAC\) tại điểm B
Ta có: \(\widehat{DBA}=\widehat{BAC}+\widehat{BCA}\) ( Tính chất góc ngoài của tam giác)
Vì BE là tia phân giác của \(\widehat{DBA}\) nên:
\(\widehat{EBA}=\frac{\widehat{DBA}}{2}=\frac{\widehat{BAC}+\widehat{BCA}}{2}\)
Mà : \(\widehat{BAC}=\widehat{BCA}\) (vì \(\Delta BAC\)cân tại B ) \(\left(1\right)\)
\(\Rightarrow\widehat{EBA}=\frac{2\cdot\widehat{BAC}}{2}=\widehat{BAC}\) \(\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\widehat{BAC}=\widehat{EBA}\)
Mà 2 góc BAC và EBA là 2 góc so le trong
Do đó: \(BE//AC\)
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
Theo t/chất tam giác cân => góc A= góc C
Vẽ Bx trên tia đối BC có góc xBA là góc ng` tg ABC
=>A+C=xBA
=>Cx2=xBA
Lại có xBE+EBA=xBA
BE là p/giác xBA
->ABE.2=xBA=C.2
=>ABE=C ->SLT
=>BE/AC
Gọi góc ngoài tại đỉnh B là góc MBA .
Ta có:\(\widehat{MBA}=\widehat{MBE}+\widehat{EBA}\)
\(\widehat{MBA}=\widehat{A}+\widehat{C}\) (tính chất góc ngoài trong tam giác)
Mà \(\widehat{MBE}=\widehat{EBA}\) (phân giác BE)
\(\widehat{A}=\widehat{C}\) (\(\Delta ABC\) cân tại B)
\(\Rightarrow\widehat{EBA}=\widehat{A}\)
=> BE // AC (hai góc so le trong bằng nhau)
Chưa học tam giác cân