Giải hệ phương trình:
\(x+y+z=12\)
\(ax+5y+4z=46\)
\(5x+ay+3z=38\)
a là tham số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng máy tính giải hệ phương trình là ra kết quả x= 2/5 y=-2/5 z =12
e ko chắc lắm vì em ms lớp 8
Trong bài này a là tham số, nên nghiệm được tính theo a.
Từ pt thứ 1 --> x = 12 -y-z, thế giá trị x này vào 2 pt dưới (chịu khó biến đổi ) ta được:
(5-a)y +(4-a)z=46-12a. (1)
(a-5)y -2z = -22. (2)
Cộng lại hai vế của 2 pt trên ta được:
(2-a)z = 24 - 12a
<=> (2-a)z = 12(2-a)
=>z =12.(a khác 2)
Thế z vào pt(2) ta có y=2/(a-5).
Từ x=12 - y - z => x= -y= -2/(a-5).
Vậy x = -2/(a-5), y = 2/(a-5), z = 12 với a thuộc R, a khác 5 và khác 2.
\(\hept{\begin{cases}ax+y+z=a^2\left(1\right)\\x+ay+z=3a\left(2\right)\\x+y+az=2\left(3\right)\end{cases}}\)
Lấy (1) + (2) + (3) vế theo vế được
\(\left(2+a\right)\left(x+y+z\right)=a^2+3a+2=\left(a+2\right)\left(a+1\right)\)
Với a = -2 thì
\(0.\left(x+y+z\right)=0\)bạn làm tiếp nhé
Với a # -2 thì
\(x+y+z=a+1\left(4\right)\)
Lấy (4) lần lược - cho (1), (2), (3) thì tìm được x,y,z
Từ pt 1 ta có thể biến đổi : \(ax+y+z=a^2\)
\(< =>a=\frac{ax+y+z}{a}\)
\(< =>x+y+z=a\)
\(< =>3x+3y+3z=x+ay+z\)
\(< =>2x+y\left(3-a\right)+2z=0\)
\(< =>2a+y-ay=0\)
\(< =>2a+y-ay-2=-2\)
\(< =>a\left(2-y\right)-\left(2-y\right)=-2\)
\(< =>\left(a-1\right)\left(2-y\right)=2.\left(-1\right)=-1.2=-2.1=1.\left(-2\right)\)
\(< =>\left(a;y\right)=\left(3;3\right)=\left(0;0\right)=\left(-1;1\right)=\left(2;4\right)\)
Bạn thay vào là đc :)) giải sai hay đúng cg ko bt nx :(