Tìm GTNN của biểu thức;
x2-4xy+5y2+10y--22y+28
Các bạn giúp mình bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
\(A=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\\ A_{max}=\sqrt{2}\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\forall x\)
Dấu '=' xảy ra khi x=1
c) C = x2 - 2xy+ y2 + y^2 - 2y +1 +2
= (x-y)^2 + (y - 1)^2 + 2
Ta có (x-y)^2;(y-1)^2 lớn hơn hoặc bằng 2
Dấu "=" xảy ra => (y-1)^2 = 0 => y-1=0 => y = 1
(x-y)^2 = 0 => x - y = 0 => x - 1= 0 => x = 1
d) D = \(4x^2-4x+1+x^2+2xy+y^2-2024\)
= \(\left(2x-1\right)^2+\left(x+y\right)^2-2024\)
Ta có (2x-1)^2;(x+y)^2 ≥ 0 => D ≥ -2024
Dấu = xảy ra => (2x-1)^2 = 0 => 2x-1 = 0 => x = 1/2
=> (x+y)^2 =0 => x+y=0 => 1/2+y =0 => y = -1/2
\(=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+5y^2+9\)
\(=\left(x-y\right)^2-12\left(x-y\right)+36+3y^2+9\)
\(=\left(x-y-6\right)^2+5y^2+9\ge9\)
Vậy GTNN của biểu thức là 9, xảy ra khi \(x=6;y=0\)
Đặt biểu thức là A
\(A=x^2-4xy+5y^2+10y-22y+28=x^2-2.x.2y+\left(2y\right)^2-\left(2y\right)^2+5y^2-12y+28=\left(x-2y\right)^2+y^2-12y+28=\left(x-2y\right)^2+y^2-2.y.6+6^2-6^2+28=\left(x-2y\right)^2+\left(y-6\right)^2-8\)Ta có: (x-2y)2+(y-6)2\(\ge0\forall x,y\in\)R
=>(x-2y)2+(y-6)2-8\(\ge-8\forall x,y\in\)R
=> GTNN của biểu thức A nhỏ nhất là -8, khi (x-2y)2=0 và (y-6)2=0
Ta có: (y-6)2=0=>y-6=0=>y=6.
-Thay y=6, ta có:
(x-2.6)2=0<=>(x-12)2=0=>x-12=0=>x=12
-Vậy GTNN của biểu thức là -8 tại x=12,y=6 (x,y\(\in\)R
không phải -8 mà là -118