\(\int\frac{1}{x^4+1}dx\)
\(\int\frac{x^4+1}{x^6+1}dx\)
\(\int\frac{x^3-x^2-4x-1}{x^4+x^3}dx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)
\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)
Thay x vào ta có...
2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)
\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)
Ta có:
\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)
\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)
Thay x vào, ta có....
Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)
a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)
\(\Rightarrow9x^2dx=-6udu\)
\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)
b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)
\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)
c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)
\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)
d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)
\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)
\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)
e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)
\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)
f/ \(I=\int cosx.sin^3xdx\)
Đặt \(u=sinx\Rightarrow du=cosxdx\)
\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)
1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)
2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)
\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)
3/
\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)
4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)
1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)
\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)
Có:
\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)
Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)
3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)
\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)
\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)
1)Đặt \(1+2x=t\Leftrightarrow x=\frac{t-1}{2}; dx=\frac{dt}{2}.\)
\(I_1=\frac{1}{4}\int\frac{t-1}{t^3}dt=\frac{1}{4}\int\left(\frac{1}{t^2}-\frac{1}{t^3}\right)dt=...\)
2) \(\int\frac{1-x^2}{x+x^3}dx=\int\left(\frac{1}{x}-\frac{2x}{1+x^2}\right)dx=\int\frac{dx}{x}-\int\frac{d\left(1+x^2\right)}{1+x^2}=...\)
Câu 1:
Ta có \(\int \frac{dx}{x^4+1}=\frac{1}{2}\int \left ( \frac{x^2+1}{x^4+1}-\frac{x^2-1}{x^4+1} \right )dx=\frac{1}{2}\int \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}}dx+\frac{1}{2}\int \frac{1-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}dx\)
\(\frac{1}{2}\int \frac{d\left ( x-\frac{1}{x} \right )}{x^2+\frac{1}{x^2}}+\frac{1}{2}\int \frac{d\left ( x+\frac{1}{x} \right )}{x^2+\frac{1}{x^2}}=\frac{1}{2}\int \frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2}+\frac{1}{2}\int \frac{d(x+\frac{1}{2})}{(x+\frac{1}{x})^2-2}\)
Đặt \(x-\frac{1}{x}=a,x+\frac{1}{x}=b\Rightarrow A=\frac{1}{2}\int \frac{da}{a^2+2}+\frac{1}{2}\int \frac{db}{b^2-2}\)
Bằng cách đặt \(a=\sqrt{2}\tan u (-\frac{\pi}{2}< u<\frac{\pi}{2})\)
\(\Rightarrow \frac{1}{2}\int \frac{da}{a^2+2}=\frac{\sqrt{2}}{4}\tan^{-1}\left (\frac{a}{\sqrt{2}} \right)+c\)
\(\frac{1}{2}\int \frac{db}{b^2-2}=\frac{1}{4\sqrt{2}}\int \left (\frac{1}{b-\sqrt{2}}-\frac{1}{b+\sqrt{2}} \right)db\)\(=\frac{1}{4\sqrt{2}}\ln|\frac{b-\sqrt{2}}{b+\sqrt{2}}|+c\)
\(\Rightarrow A=\frac{1}{2\sqrt{2}}\tan^{-1} \left (\frac{x^2-1}{\sqrt{2}x} \right)-\frac{1}{4\sqrt{2}}\ln|\frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}|+c\)
Awn, chúc mừng năm mới!
Câu 2:
\(B=\int \frac{x^4+1}{x^6+1}=\int\frac{(x^2+1)^2-2x^2}{(x^2+1)(x^4-x^2+1)}dx=\int\frac{x^2+1}{x^4-x^2+1}dx-2\int \frac{x^2dx}{(x^3)^2+1}\)
\(\int\frac{1+\frac{1}{x^2}}{x^2-1+\frac{1}{x^2}}dx-\frac{2}{3}\int\frac{d(x^3)}{(x^3)^2+1}=\int\frac{d\left (x-\frac{1}{x} \right)}{\left (x-\frac{1}{x}\right)^2+1}-\frac{2}{3}\int\frac{d(x^3)}{(x^3)^2+1}\)
Đặt \(x-\frac{1}{x}=a, x^3=b\). Cần tính \(B=\int\frac{da}{a^2+1}-\frac{2}{3}\int\frac{db}{b^2+1}\)
Đến đây bài toán trở về dạng quen thuộc . Đặt \(a=\tan u, b=\tan v\)
\(\Rightarrow B=\tan ^{-1}\left (x-\frac{1}{x}\right)-\frac{2}{3}\tan^{-1}(x^3)+c\)