K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

\(\frac{2x}{5}=\frac{3y}{7}=\frac{2x+3y}{5+7}=\frac{6x+6y}{15+14}=\frac{6\left(x+y\right)}{29}=\frac{6.29}{29}=6\)

Từ \(\frac{2x}{5}=6\Rightarrow x=6.5:2=15\)

từ \(\frac{3y}{7}=6\Rightarrow y=6.7:3=14\)

Vậy x=15; y=14

17 tháng 7 2016

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

17 tháng 7 2016

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

bây giờ mới thấy bài này nhảm v~

17 tháng 7 2016

hjjj

e nek

1 tháng 8 2016

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow12=6x\)

x=2

ta có \(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\frac{3y-2}{7}=1\)

3y-2=7

3y=9

y=3

vậy x = 2 và y = 3

1 tháng 1 2017

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\left(2x+3y-1\ne0\right)\)

\(\Rightarrow12=6x\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

1 tháng 1 2017

Theo tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{2x+1}{5}\)=\(\frac{3y-2}{7}\)=\(\frac{2x+1+3y-2}{5+7}\)=\(\frac{2x+3y-1}{12}\)=\(\frac{2x+3y-1}{6x}\)

=> 6x = 12 => x = 12 : 6 = 2

 Vậy x = 2 nhé pn!!!

Ta có : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Nên : \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

<=> 6x = 12

=> x = 2 . 

1 tháng 11 2017

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6x}=\frac{0}{12-6x}=0\)

\(\left[\begin{array}{nghiempt}2x+1=0\\3y-2=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=-1\\3y=2\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\y=\frac{2}{3}\end{array}\right.\)

23 tháng 10 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

+) Xét \(2x+3y-1=0\Rightarrow2x+1=0=3y-2=0\)

\(\Rightarrow x=\frac{-1}{2},y=\frac{2}{3}\)

+) Xét \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Ta có: \(2x+1=3y-2\)

\(\Rightarrow2.2+1=3y-2\)

\(\Rightarrow5=3y-2\)

\(\Rightarrow3y=7\)

\(\Rightarrow y=\frac{7}{3}\)

Vậy bộ số \(\left(x,y\right)\)\(\left(\frac{-1}{2},\frac{2}{3}\right);\left(2,\frac{7}{3}\right)\)