cho A =1+2+2^2 +2^3 +......+2^19 so sánh A voi B=2^20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)...\left(\frac{19}{19}-\frac{1}{19}\right)\left(\frac{20}{20}-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)
\(A=\frac{1.2.3...18.19}{2.3.4...19.20}\)
\(A=\frac{1}{20}\Leftrightarrow A>\frac{1}{21}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}......\frac{19}{20}=\frac{1}{20}>\frac{1}{21}\)
\(\text{Vậy: A lớn hơn 1/21}\)
Ta có :
\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)
2 x a = 2+2^2+...+2^19+2^20
khi đó 2xa-a=[ 2+2^2+...+2^19+2^20] - [1+2+...+2^19]
a=2^20-1
nhìn vào bài b=2^20
so sánh a và b ta thấy a<b
vậy a<b
tích nha chuẩn luôn 100%